(Ⅰ)解.依题意每年投入构成首项为800万元.公比为的等比数列.每年旅游业收入组织首项为400万元.公比为的等比数列.------------2分 查看更多

 

题目列表(包括答案和解析)

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

甲船由岛出发向北偏东的方向作匀速直线航行,速度为海里∕小时,在甲船从岛出发的同时,乙船从岛正南海里处的岛出发,朝北偏东的方向作匀速直线航行,速度为海里∕小时。

⑴求出发小时时两船相距多少海里?

⑴   两船出发后多长时间相距最近?最近距离为多少海里?

【解析】第一问中根据时间得到出发小时时两船相距的海里为

第二问设时间为t,则

利用二次函数求得最值,

解:⑴依题意有:两船相距

答:出发3小时时两船相距海里                           

⑵两船出发后t小时时相距最近,即

即当t=4时两船最近,最近距离为海里。

 

查看答案和解析>>

已知数列是公差不为零的等差数列,,且成等比数列。

⑴求数列的通项公式;

⑵设,求数列的前项和

【解析】第一问中利用等差数列的首项为,公差为d,则依题意有:

第二问中,利用第一问的结论得到数列的通项公式,

,利用裂项求和的思想解决即可。

 

查看答案和解析>>

已知函数f(x)=ex-x(e是自然对数的底数)
(Ⅰ)求f(x)的最小值;
(Π)不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2}
,且M∩P≠∅,求实数a的取值范围;
(Ⅲ)已知n∈N+,且Sn=
n
0
f(x)dx
,是否存在等差数列an和首项为f(1)公比大于0的等比数列bn,使数列an+bn的前n项和等于Sn

查看答案和解析>>

已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an•2n,求数列{bn}的前n项和Tn

查看答案和解析>>


同步练习册答案