解: ∵ ∴当时 有最小值-1 当时有最大值3 查看更多

 

题目列表(包括答案和解析)

(本小题满分16分)通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲授开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受的能力越强),x表示提出和讲授概念的时间(单位:min),可有以下的公式:

   (1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?

   (2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?

   (3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?

查看答案和解析>>

(本小题满分16分)通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲授开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受的能力越强),x表示提出和讲授概念的时间(单位:min),可有以下的公式:
(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?

查看答案和解析>>

探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.102
4.24
4.3
5
5.8
7.57

请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数,(x>0)在区间(0,2)上递减,则在        上递增;
(2)当x=      时,,(x>0)的最小值为        
(3)试用定义证明,(x>0)在区间(0,2)上递减;
(4)函数,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
(5)解不等式.
解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。

查看答案和解析>>

二次函数满足条件:

①当时,的图象关于直线对称;

上的最小值为

(1)求函数的解析式;

(2)求最大的,使得存在,只要,就有

查看答案和解析>>

设二次函数满足下列条件:

①当时, 的最小值为0,且恒成立;

②当时,恒成立.

(I)求的值;

(Ⅱ)求的解析式;

(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立

 

查看答案和解析>>


同步练习册答案