题目列表(包括答案和解析)
已知函数
,当x=1时有最大值1。当
时,函数
的值域为
,则
的值为
| A. | B. | C. | D. |
| A. | B. | C. | D. |
已知函数
,
(Ⅰ)求函数
的单调递减区间;
(Ⅱ)令函数
(
),求函数
的最大值的表达式
;
【解析】第一问中利用令
,
,
∴
,![]()
第二问中,
=![]()
=![]()
=
令
,
,则
借助于二次函数分类讨论得到最值。
(Ⅰ)解:令
,
,
∴
,![]()
∴
的单调递减区间为:![]()
…………………4分
(Ⅱ)解:
=![]()
=![]()
=![]()
令
,
,则
……………………4分
对称轴![]()
① 当
即
时,
=
……………1分
② 当
即
时,
=
……………1分
③ 当
即
时,
……………1分
综上:![]()
已知函数
,
.
(Ⅰ)若函数
依次在
处取到极值.求
的取值范围;
(Ⅱ)若存在实数
,使对任意的
,不等式
恒成立.求正整数
的最大值.
【解析】第一问中利用导数在在
处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数
,使对任意的
,不等式
恒成立转化为
,恒成立,分离参数法求解得到范围。
解:(1)
①
![]()
(2)不等式
,即
,即
.
转化为存在实数
,使对任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
设
,则.![]()
设
,则
,因为
,有
.
故
在区间
上是减函数。又![]()
故存在
,使得
.
当
时,有
,当
时,有
.
从而
在区间
上递增,在区间
上递减.
又
[来源:]
![]()
所以当
时,恒有
;当
时,恒有![]()
;
故使命题成立的正整数m的最大值为5
已知函数
,
,若存在
,使
为
的最小值,
为
的最大值,则此时数对
为 。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com