已知为坐标原点.曲线上的任意一点到点的距离与到直线:的距离相等.过点的直线交曲线于.两点.且曲线在.两点处的切线分别为.. ⑴求曲线的方程, ⑵求证:直线.互相垂直, ⑶轴上是否存在一点.使得直线始终平分?若存在.求出点坐标,若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

已知O为坐标原点,曲线C上的任意一点P到点F(0,1)的距离与到直线l:y=-1的距离相等,过点F的直线交曲线C于A、B两点,且曲线C在A、B两点处的切线分别为l1、l2
(1)求曲线C的方程;
(2)求证:直线l1、l2互相垂直;
(3)y轴上是否存在一点R,使得直线RF始终平分∠ARB?若存在,求出R点坐标;若不存在,说明理由.

查看答案和解析>>

已知O为坐标原点,曲线C上的任意一点P到点F(0,1)的距离与到直线l:y=-1的距离相等,过点F的直线交曲线C于A、B两点,且曲线C在A、B两点处的切线分别为l1、l2
(1)求曲线C的方程;
(2)求证:直线l1、l2互相垂直;
(3)y轴上是否存在一点R,使得直线RF始终平分∠ARB?若存在,求出R点坐标;若不存在,说明理由.

查看答案和解析>>

已知O为坐标原点,曲线C上的任意一点P到点F(0,1)的距离与到直线l:y=-1的距离相等,过点F的直线交曲线C于A、B两点,且曲线C在A、B两点处的切线分别为l1、l2
(1)求曲线C的方程;
(2)求证:直线l1、l2互相垂直;
(3)y轴上是否存在一点R,使得直线RF始终平分∠ARB?若存在,求出R点坐标;若不存在,说明理由.

查看答案和解析>>

已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线L的参数方程为 (t为参数)
(1)写出直线L的普通方程与Q曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线C,设 M(x,y)为C上任意一点,求的最小值,并求相应的点M的坐标.

查看答案和解析>>

已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>


同步练习册答案