题目列表(包括答案和解析)
平面内与两定点
连线的斜率之积等于常数
(
的点的轨迹,连同
两点所成的曲线为C.
(Ⅰ)求曲线C的方程,并讨论C的形状;
(II)设
,
,对应的曲线是
,已知动直线
与椭圆
交于
、
两不同点,且
,其中O为坐标原点,探究
是否为定值,写出解答过程。
| x2 |
| a2 |
| y2 |
| b2 |
| π |
| 3 |
| NP |
| NQ |
已知双曲线
的焦点与椭圆
的焦点重合,且该椭圆的长轴长为
,
是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点
满足:
,直线
与
的斜率之积为
,求证:存在定点
,
使得
为定值,并求出
的坐标;
(3)若
在第一象限,且点
关于原点对称,点
在
轴的射影为
,连接
并延长交椭圆于
点
,求证:以
为直径的圆经过点
.
已知双曲线
的焦点与椭圆
的焦点重合,且该椭圆的长轴长为
,
是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点
满足:
,直线
与
的斜率之积为
,求证:存在定点
,
使得
为定值,并求出
的坐标;
(3)若
在第一象限,且点
关于原点对称,点
在
轴的射影为
,连接
并延长交椭圆于
点
,求证:以
为直径的圆经过点
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com