20.设数列的各项都是正数.. . .学科网 查看更多

 

题目列表(包括答案和解析)

(本小题满分16分)

设数列的通项是关于x的不等式的解集中整数的个数.

(Ⅰ)求,并且证明是等差数列;

(Ⅱ)设mkpN*,m+p=2k的前n项和.求证:

(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论;如果不成立,请说明理由.

查看答案和解析>>

(本小题满分16分)已知数列的各项均为正数,表示该数列前项的和,且对任意正整数,恒有,设

(1)求

(2)求数列的通项公式;

(3)求数列的最小项.

查看答案和解析>>

(本小题满分16分)

已知二次函数同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立。设数列的前n项和

  (1)求函数的表达式;  (2)求数列的通项公式;(3)设各项均不为零的数列中,所有满足的整数I的个数称为这个数列的变号数。令n为正整数),求数列的变号数.

查看答案和解析>>

(本小题满分16分)

已知数列是各项均为正数的等差数列.

(1)若,且成等比数列,求数列的通项公式

(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式恒成立,求实数的最小值;

(3)若数列中有两项可以表示为某个整数的不同次幂,求证:数列 中存在无穷多项构成等比数列.

 

查看答案和解析>>

(本小题满分16分)(本题中必要时可使用公式:) 

 设是各项均为正数的无穷项等差数列.

(Ⅰ)记

已知,试求此等差数列的首项a1及公差d

(Ⅱ)若的首项a1及公差d都是正整数,问在数列中是否包含一个非常数列 

 的无穷项等比数列?若存在,请写出的构造过程;若不存在,说明理由.

查看答案和解析>>

一、填空题

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答题

15[解]:证:设   ,连 。                    

 ⑴  ∵为菱形,   ∴ 中点,又中点。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵为菱形,   ∴,              (9分)

   又∵    (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵ (8分)

        ∵,∴

        ∴                (10分)

         

             (13分)

          (当时取“”)   

所以的最大值为,相应的    (14分)

17.解:⑴直线的斜率中点坐标为

        ∴直线方程为     (4分)

        ⑵设圆心,则由上得:

                             ①      

        又直径,,

         

           ②       (7分)

由①②解得

∴圆心                  

∴圆的方程为  或  (9分)                         

 ⑶  ,∴ 当△面积为时 ,点到直线的距离为 。                   (12分)

 又圆心到直线的距离为,圆的半径   

∴圆上共有两个点使 △的面积为  .  (14分)

18[解] (1)乙方的实际年利润为:  .   (5分)

时,取得最大值.

      所以乙方取得最大年利润的年产量 (吨).…………………8分

 (2)设甲方净收入为元,则

学科网(Zxxk.Com) 将代入上式,得:.   (13分)

    又

    令,得

    当时,;当时,,所以时,取得最大值.

    因此甲方向乙方要求赔付价格 (元/吨)时,获最大净收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距离的最小值即为到直线的距离(4分)

                      (7分)

   ⑵假设存在正数,令 (9分)

   由得:  

   ∵当时, ,∴为减函数;

   当时,,∴ 为增函数.

   ∴         (14分)

   ∴

的取值范围为        (16分)

 

20. 解:⑴由条件得:  ∴  (3分)

     ∵为等比数列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

为递增数列。                              (11分)

从而       (14分)

                            (16分)

附加题答案

21.         (8分)

22. 解:⑴①当时,

       ∴                                                      (2分)

        ②当时,

       ∴                                                 (4分)

        ③当时,

       ∴                                                (6分)

       综上该不等式解集为                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴设为轨迹上任一点,则

                                             (4分)

       化简得:   为求。                                (6分)

       ⑵设

         ∵  ∴                        (8分)

         ∴ 为求                                   (12分)


同步练习册答案