连.则直线与侧面所成的角为. 查看更多

 

题目列表(包括答案和解析)

如图,在正四棱锥中,

(1)求该正四棱锥的体积

(2)设为侧棱的中点,求异面直线

所成角的大小.

【解析】第一问利用设为底面正方形中心,则为该正四棱锥的高由已知,可求得

所以,

第二问设中点,连结

可求得

中,由余弦定理,得

所以,

 

查看答案和解析>>

13、下列结论正确的是

①各个面都是三角形的几何体是三棱锥;
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;
③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;
④圆锥的顶点与底面圆周上的任意一点的连线都是母线.

查看答案和解析>>

下列结论正确的是______
①各个面都是三角形的几何体是三棱锥;
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;
③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;
④圆锥的顶点与底面圆周上的任意一点的连线都是母线.

查看答案和解析>>

下列结论正确的是   
①各个面都是三角形的几何体是三棱锥;
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;
③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;
④圆锥的顶点与底面圆周上的任意一点的连线都是母线.

查看答案和解析>>

下列结论正确的是   
①各个面都是三角形的几何体是三棱锥;
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;
③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;
④圆锥的顶点与底面圆周上的任意一点的连线都是母线.

查看答案和解析>>


同步练习册答案