题目列表(包括答案和解析)
解:因为函数没有零点,所以方程
无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
某地区的羊患某种病的概率是0.4,且每只羊患病与否是彼此独立的,今研制一种新的预防药,任选6只羊做实验,结果6只羊服用此药后均未患病. 你认为这种药是否有效?
解:因为有负根,所以
在y轴左侧有交点,因此![]()
解:因为函数没有零点,所以方程
无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“
”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数
的分布列。
解:因为函数没有零点,所以方程
无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
现有5名同学的物理和数学成绩如下表:
| 物理 | 64 | 61 | 78 | 65 | 71 |
| 数学 | 66 | 63 | 88 | 76 | 73 |
(1)画出散点图;
(2)若
与
具有线性相关关系,试求变量
对
的回归方程并求变量
对
的回归方程.
汕头二中拟建一座长
米,宽
米的长方形体育馆.按照建筑要求,每隔
米(
,
为正常数)需打建一个桩位,每个桩位需花费
万元(桩位视为一点且打在长方形的边上),桩位之间的
米墙面需花
万元,在不计地板和天花板的情况下,当
为何值时,所需总费用最少?
【解析】本试题主要考查了导数在研究函数中的运用。先求需打
个桩位.再求解墙面所需费用为:
,最后表示总费用
,利用导数判定单调性,求解最值。
解:由题意可知,需打
个桩位.
…………………2分
墙面所需费用为:
,……4分
∴所需总费用![]()
(
)…7分
令
,则
当
时,
;当
时,
.
∴当
时,
取极小值为
.而在
内极值点唯一,所以
.∴当
时,
(万元),即每隔3米打建一个桩位时,所需总费用最小为1170万元.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com