题目列表(包括答案和解析)
在极坐标系中,圆
:
和直线
相交于
、
两点,求线段
的长
【解析】本试题主要考查了极坐标系与参数方程的运用。先将圆的极坐标方程圆
:
即
化为直角坐标方程即 ![]()
然后利用直线
即
,得到圆心到直线的距离
,从而利用勾股定理求解弦长AB。
解:分别将圆
和直线
的极坐标方程化为直角坐标方程:
圆
:
即
即
,
即
, ∴ 圆心
,
---------3分
直线
即
, ------6分
则圆心
到直线
的距离
,----------8分
则
即所求弦长为![]()
在平面直角坐标系
中,曲线
的参数方程为
点
是曲线
上的动点.
(1)求线段
的中点
的轨迹的直角坐标方程;
(2) 以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,若直线
的极坐标方程为
,求点
到直线
距离的最大值.
【解析】第一问利用设曲线
上动点
,由中点坐标公式可得
所以点
的轨迹的参数方程为
消参可得![]()
第二问,由题可知直线
的直角坐标方程为
,因为原点到直线的距离为
,
所以点
到直线的最大距离为![]()
在平面直角坐标系xoy中,已知曲线C1:x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(Ⅰ)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的
、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程.
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.
【解析】(Ⅰ)根据极坐标与普通方程的互化,将直线l:ρ(2cosθ-sinθ)=6化为普通方程,C2的方程为
,化为普通方程;(Ⅱ)利用点到直线的距离公式表示出距离,求最值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com