题目列表(包括答案和解析)
已知
=
,
=
,
=
,设
是直线
上一点,
是坐标原点.
⑴求使
取最小值时的
;
⑵对(1)中的点
,求
的余弦值.
【解析】第一问中利用设
,则根据已知条件,O,M,P三点共线,则可以得到x=2y,然后利用
![]()
可知当x=4,y=2时取得最小值。
第二问中利用数量积的性质可以表示夹角的余弦值,进而得到结论。
(1)、因为设
则
![]()
可知当x=4,y=2时取得最小值。此时
。
(2)![]()
设函数
.
(Ⅰ) 当
时,求
的单调区间;
(Ⅱ) 若
在
上的最大值为
,求
的值.
【解析】第一问中利用函数
的定义域为(0,2),
.
当a=1时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数
的定义域为(0,2),
.
(1)当
时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
若
,计算得当
时
,当
时有
,
,
,
,因此猜测当
时,一般有不等式________________
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com