20. 查看更多

 

题目列表(包括答案和解析)

(本小题满分16分)

已知正三角形OAB的三个顶点都在抛物线上,其中O为坐标原点,设圆C是的外接圆(点C为圆心)(1)求圆C的方程;(2)设圆M的方程为,过圆M上任意一点P分别作圆C的两条切线PE、PF,切点为E、F,求的最大值和最小值

查看答案和解析>>

(本小题满分16分)已知函数在区间上的最小值为,令,求证:

查看答案和解析>>

(本小题满分16分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);

(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

(本小题满分16分)设数列的前n项和为,数列满足: ,且数列的前

n项和为.

(1) 求的值;

(2) 求证:数列是等比数列;

(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.

查看答案和解析>>

(本小题满分16分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

或7                   ………………………………14分

16.(本小题满分14分)

(1)证明:E、P分别为AC、A′C的中点,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 证明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)证明:在△A′EC中,P为A′C的中点,∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

                    …………………………………………15分

(本题也可以利用特征三角形中的有关数据直接求得)

18.(本小题满分15分)

(1)延长BD、CE交于A,则AD=,AE=2

     则S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    当

           

…………………………………………15分

(3)

设上式为 ,假设取正实数,则?

时,递减;

递增. ……………………………………12分

                

    

∴不存在正整数,使得

                  …………………………………………16分

显然成立             ……………………………………12分

时,

使不等式成立的自然数n恰有4个的正整数p值为3

                          ……………………………………………16分

 

 

 

 

 

 

 

泰州市2008~2009学年度第二学期期初联考

高三数学试题参考答案

附加题部分

度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

D.证明:(1)因为

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,……………………………………8分

    三式相加即得……………………………10分

22.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(1)

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

∴所求的余弦值为                     ……………………………………6分

(3)设

,由

时,

时,∴   ……………………………………10分

 


同步练习册答案