剖析:欲求的值.只有先求得x.y的值.为此必须逆用幂的运算法则.把已知等式化为同底数幂.由指数相等列出方程组求解. 解:把已知等式化为同底数幂.得: 查看更多

 

题目列表(包括答案和解析)

(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是(      );根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a18=(     ) ,an=(      )。
(2)如果欲求的值,可令…………………① 将①式两边同乘以3,得(        )…………………② ,由②减去①式,得S=(      )。
(3)用由特殊到一般的方法知:若数列,从第二项开始每一项与前一项之比的常数为q,则an=(      )。 (用含的代数式表示),如果这个常数,那么(        )(用含的代数式表示).

查看答案和解析>>

已知y关于x的函数关系式为y=(a-1)x2-2ax+a+2.
(1)上述函数的图象与x轴只有一个交点时,求交点的坐标;
(2)当此函数是二次函数时,设顶点为(m,n),求n关于m的函数关系式;
(3)y关于x的函数是二次函数,抛物线与x轴有两个交点时,顶点为(m,n),
1
m
+
1
n
=3
,求值a的.

查看答案和解析>>

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得 Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.
精英家教网
探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=-
1
8
x2
有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求
x
y
的值.

查看答案和解析>>

探索研究
(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是
 
;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a18=
 
,an=
 

(2)如果欲求1+3+32+33+…+320的值,可令S=1+3+32+33+…+320
将①式两边同乘以3,得
 

由②减去①式,得S=
 

(3)用由特殊到一般的方法知:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,则an=
 
(用含a1,q,n的代数式表示),如果这个常数q≠1,那么a1+a2+a3+…+an=
 
(用含a1,q,n的代数式表示).

查看答案和解析>>

(1)观察一列数,2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是
2
2
,根据此规律,如果an(n是正整数)表示这个数列的第n项,那么,a18=
218
218
,an=
2n
2n

(2)如果欲求1+3+32+33+34+…+320的值,可令s=1+3+32+33+34+…+320,①
①式两边同乘以3,得
3s=3+32+32+33+34+…+321
3s=3+32+32+33+34+…+321
,②
②式减去①式,得:s=
1
2
(321-1)
1
2
(321-1)

查看答案和解析>>


同步练习册答案