20.因为 f (x) =.所以 f ′ (x) =+( 2x + n ) 查看更多

 

题目列表(包括答案和解析)

请阅读下列材料:
若两个实数a1,a2满足a1+a2=1,则证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22,因为对一切实数x,f(x)≥O恒成立,所以△=4-4×2(a12+a22)≤0,即根据上述证明方法,若n个实数a1,a2,…,an满足a1+a2+…+an=1时,你能得到的不等式为:   

查看答案和解析>>

请阅读下列材料:
若两个实数a1,a2满足a1+a2=1,则数学公式证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22,因为对一切实数x,f(x)≥O恒成立,所以△=4-4×2(a12+a22)≤0,即数学公式根据上述证明方法,若n个实数a1,a2,…,an满足a1+a2+…+an=1时,你能得到的不等式为:________.

查看答案和解析>>

请阅读下列材料:
若两个实数a1,a2满足a1+a2=1,则
a
2
1
+
a
2
2
1.
2
证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22,因为对一切实数x,f(x)≥O恒成立,所以△=4-4×2(a12+a22)≤0,即
a
2
1
+
a
•2
2
1
2
根据上述证明方法,若n个实数a1,a2,…,an满足a1+a2+…+an=1时,你能得到的不等式为:
 

查看答案和解析>>

请阅读下列材料:
若两个实数a1,a2满足a1+a2=1,则
a21
+
a22
1.
2
证明:构造函数f(x)=(x-a12+(x-a22=2x2-2x+a12+a22,因为对一切实数x,f(x)≥O恒成立,所以△=4-4×2(a12+a22)≤0,即
a21
+
a•22
1
2
根据上述证明方法,若n个实数a1,a2,…,an满足a1+a2+…+an=1时,你能得到的不等式为:______.

查看答案和解析>>


同步练习册答案