题目列表(包括答案和解析)
(本小题满分14分)如果对于函数
的定义域内任意的
,都有
成立,那么就称函数
是定义域上的“平缓函数”.
(1)判断函数
,
是否是“平缓函数”;(2)若函数
是闭区间
上的“平缓函数”,且
.证明:对于任意的![]()
,都有
成立.(3)设
、
为实常数,
.若
是区间
上的“平缓函数”,试估计
的取值范围(用
表示,不必证明).
(本小题满分14分)设数列
的各项都是正数,且对任意
,都有
,记
为数列
的前
项和.(Ⅰ)求数列
的通项公式;(Ⅱ)若
(
为非零常数,
),问是否存在整数
,使得对任意
,都有
.
(本小题满分14分)已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为
,且满足![]()
,a,x1,x2为常数,x1≠x2.
(1)试求a的值;
(2)记函数![]()
,x∈(0,e],若F(x)的最小值为6,求实数b的值;
(3)对于(2)中的b,设函数
,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若
,试判断x0,x1,x2的大小,并加以证明.
(本小题满分14分)已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为
,且满足![]()
,a,x1,x2为常数,x1≠x2.
(1)试求a的值;
(2)记函数![]()
,x∈(0,e],若F(x)的最小值为6,求实数b的值;
(3)对于(2)中的b,设函数
,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若
,试判断x0,x1,x2的大小,并加以证明.
(本小题满分14分)
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为![]()
.现已知相距18
的A,B两家化工厂(污染源)的污染强度分别为
,它们连线上任意一点C处的污染指数
等于两化工厂对该处的污染指数之和.设
(
).
(1)试将
表示为
的函数;
(2)若
,且
时,
取得最小值,试求
的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com