题目列表(包括答案和解析)
(本题满分14分) 设等差数列{an}的首项a1为a,公差d=2,
前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:
n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(本题满分14分) 设点F(0,2),曲线C上任意一点M(x,y)满足以线段FM为直径的圆与x 轴相切.
(1)求曲线C的方程;
(2)设过点Q(0,-2)的直线l与曲线C交于A,B两点,问|FA|,|AB|,|FB|能否成等差数列?若能,求出直线l的方程;若不能,请说明理由.
(本题满分14分)设等比数列
的首项为
,公比
,前
项和为![]()
(Ⅰ)当
时,
三数成等差数列,求数列
的通项公式;
(Ⅱ)对任意正整数
,命题甲:
三数构成等差数列.
命题乙:
三数构成等差数列.
求证:对于同一个正整数
,命题甲与命题乙不能同时为真命题.
(本题满分14分) 设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:
n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(本题满分14分) 设等差数列{an}的首项a1为a,公差d=2,
前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:
n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com