李华对本班同学的业余兴趣爱好进行了一次调查. 他根据采集到的数据.绘制了下面的图13和图14.请你根据图中提供的信息.解答下列问题:(1)求出李华同学所在班级的总人数及爱好书画的人数,(2)在图13中画出表示“书画 部分的条形图,(3)观察图13和图14.请你再写出两条相关结论. 查看更多

 

题目列表(包括答案和解析)

(本题满分11分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒).

1.(1)设△BPQ的面积为S,求S与t之间的函数关系式

2.(2)当线段PQ与线段AB相交于点O,且2AO=OB时,求t的值.

3.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?

4.(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分11分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)

1.(1)直接写出c的值;

   2.(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?

   3.(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右测上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求点G的坐标.

 

查看答案和解析>>

(本题满分11分)

如图所示,⊙的直径是它的两条切线,为射线上的动点(不与重合),切⊙,交,设

(1)求的函数关系式;

(2)若⊙与⊙外切,且⊙分别与

相切于点,求为何值时⊙半径为1.

 

查看答案和解析>>

(本题满分11分)

在一个暗箱中,放有大小和质量都相同的红、黄、绿、黑四种颜色的球若干个.现从中任意摸出一个球,球摸出后仍放回箱内.若得到红球的概率为,得到黄球的概率为,得到绿球的概率为.已知暗箱中黑球有15个,问袋中原有红球、黄球、绿球各多少个?

 

查看答案和解析>>

.(本题满分11分)
如图,在正方形ABCD内,已知两个动圆⊙O1与⊙Q2互相外切.且⊙O1与边AB,AD相切,⊙O2与边BC,CD相切,若正方形的边长为1,⊙O1与⊙Q2的半径分别为

【小题1】(1)求的关系式;
【小题2】(2)求⊙O1与⊙Q2的面积之和的最小值.

查看答案和解析>>

一、1.C    2.D    3.C   4.B    5.C    6.A    7.C    8.D    9. C   10. A

二、11.  12.   13.62°    14.4    15.(n+2)2-4n=n2+4   16.25

17.5    18.15°或75°

三、19.原式=a2+a-(a2-1)            ……(3分)

        =a2+a-a2+1              ……(6分)

        =a+1                   ……(9分)

20.(1)画图如图所示;         ……(4分)

(2)点A/的坐标为(-2,4);  ……(7分)

(3)的长为:.        ……(10分)

21.(1)设小明他们一共去了x个成人,则去了学生(12-x)人,依题意,得

        35x+0.5×35(12-x)=350                    ………………………………(3分)

        解这个方程,得x=8                        ………………………………(5分)

        答:小明他们一共去了8个成人,去了学生4人.      ……………………(6分)

(2)若按16个游客购买团体票,需付门票款为35×0.6×16=336(元)    ……(8分)

     ∵ 336<350,                            ………………………………(9分)

     ∴ 按16人的团体购票更省钱.             ………………………………(10分)

22.(1)李华所在班级的总人数为:

14÷35%=40(人).     ……(3分)

        爱好书画的人数为:

        40-14-12-4=10(人). ……(6分)

    (2)书画部分的条形图如图所示.(9分)

    (3)答案不唯一.(每写对一条给1分)如:表示“球类”的扇形圆心角为:

360×=126°爱好音乐的人数是其他爱好人数的3倍等.     …………(11分)

23.(1)由图象可知公司从第4个月末以后开始扭亏为盈.     ………………………(2分)

   (2)由图象可知其顶点坐标为(2,-2),

故可设其函数关系式为:y=a(t-2)2-2.         ………………………………(4分)

∵ 所求函数关系式的图象过(0,0),于是得

   a(0-2)2-2=0,解得a= .                ………………………………(5分)

        ∴ 所求函数关系式为:S=(t-2)2-2或S=t2-2t.   ………………………(7分)

   (3)把t=7代入关系式,得S=×72-2×7=10.5     ……………………………(10分)

         把t=8代入关系式,得S=×82-2×8=16

         16-10.5=5.5                              ………………………………(11分)

         答:第8个月公司所获利是5.5万元.        ………………………………(12分)

24.(1)∵ BC、DE分别是两个等腰直角△ADE、△ABC的斜边,

∴ ∠DAE=∠BAC=90°,

∴ ∠DAE-∠DAC=∠BAC-∠DAC,∴ ∠CAE=∠BAD.          ………………(2分)

        在△ACE和△ABD中,

                                    ………………………………(4分)

∴ △ACE≌△ABD(S?A?S).               ………………………………(5分)

(2)①∵ AC=AB=

∴ BC=AC2+AB2=

        ∴ BC=4.                                  ………………………………(6分)

        ∵ AB=AC, ∠BAC=90°,

        ∴ ∠ACB=∠B=45°,

        ∵ △ACE≌△ABD

∴ ∠ACB=∠B=45°

 ∴ ∠DCE=90°.                            ………………………………(7分)

        ∵ △ACE≌△ABD,

        ∴ CE=BD=x,而BC=4,∴ DC=4-x,

        ∴ Rt△DCE的面积为DC?CE=(4-x)x.

        ∴ (4-x)x=1.5                          ………………………………(9分)

        即x2-4x+3=0.  解得x=1或x=3.            ………………………………(11分)

 ② △DCE存在最大值,理由如下:

    设△DCE的面积为y,于是得y与x的函数关系式为:

y=(4-x)x   (0<x<4)                   ………………………………(12分)

 =-(x-2)2+2

∵ a=-<0, ∴ 当x=2时,函数y有最大值2.     ……………………(13分)

      又∵ 此时,x满足关系式0<x<4,

        故当x=2时,△DCE的最大面积为2.       ………………………………(14分)

 


同步练习册答案