题目列表(包括答案和解析)
如图,某小区准备绿化一块直径为
的半圆形空地,
外的地方种草,
的内接正方形
为一水池,其余地方种花.若
,设
的面积为
,正方形
的面积为
,将比值
称为“规划合理度”.
(1)试用
,
表示
和
.
(2)当
为定值,
变化时,求“规划合理度”取得最小值时的角
的大小.
![]()
【解析】第一问中利用在![]()
ABC中
,
=
设正方形的边长为
则 ![]()
然后解得
第二问中,利用
而
=![]()
借助于
为减函数
得到结论。
(1)、 如图,在![]()
ABC中
,
=
设正方形的边长为
则 ![]()
=
![]()
(2)、
而
=
∵0 <
<
,又0 <2
<
,
0<t£1
为减函数
当
时
取得最小值为
此时
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图所示,ABCD是一块边长为7米的正方形铁皮,其中ATN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮PQCR,其中P是![]()
上一点.设
,长方形PQCR的面积为S平方米.
(1)求S关于
的函数解析式;
(2)设
,求S关于t的表达式以及S的最大值.![]()
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图所示,ABCD是一块边长为7米的正方形铁皮,其中ATN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮PQCR,其中P是
上一点.设
,长方形PQCR的面积为S平方米.
(1)求S关于
的函数解析式;
(2)设
,求S关于t的表达式以及S的最大值.
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图所示,ABCD是一块边长为7米的正方形铁皮,其中ATN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮PQCR,其中P是
上一点.设
,长方形PQCR的面积为S平方米.
(1)求S关于
的函数解析式;
(2)设
,求S关于t的表达式以及S的最大值.
![]()
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图所示,ABCD是一块边长为7米的正方形铁皮,其中ATN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮PQCR,其中P是
上一点.设
,长方形PQCR的面积为S平方米.
(1)求S关于
的函数解析式;
(2)设
,求S关于t的表达式以及S的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com