(Ⅱ) 记数列的公比为.数列满足. 查看更多

 

题目列表(包括答案和解析)

数列{an}的前n项和为Sn(n∈N*),Sn=(m+1)-man对任意的n∈N*都成立,其中m为常数,且m<-1.
(1)求证:数列{an}是等比数列;
(2)记数列{an}的公比为q,设q=f(m).若数列{bn}满足;b1=a1,bn=f(bn-1)(n≥2,n∈N*).求证:数列{
1bn
}
是等差数列;
(3)在(2)的条件下,设cn=bn•bn+1,数列{cn}的前n项和为Tn.求证:Tn<1.

查看答案和解析>>

数列{an}满足a1=1,a2=2,an=
12
(an-1+an-2)
,(n=3,4,…);数列{bn}是首项为b1=1,公比为-2的等比数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=nanbn(n=1,2,3,…),求数列{cn}的前n项和Sn

查看答案和解析>>

数列{an}满足a1=1,an+1=
1
2
an+n,n为奇数
an-2n,n为偶数
,且bn=a2n-2,n∈N*
(1)求a2,a3,a4
(2)求证数列{bn}是以
1
2
为公比的等比数列,并求其通项公式.
(3)设(
3
4
n•Cn=-nbn,记Sn=C1+C2+…+Cn,求Sn

查看答案和解析>>

数列{an}的首项为a1=
5
6
,以a1,a2,a3,…,an-1,an为系数的二次方程an-1x2-anx+1=0(n≥2,且n∈N+)都有根α、β,且α、β满足3α-αβ+3β=1.
(1)求证:{an-
1
2
}
是等比数列;           
(2)求{an}的通项公式;
(3)记Sn为{an}的前n项和,对一切n∈N+,不等式2Sn-n-2λ≥0恒成立,求λ的取值范围.

查看答案和解析>>

数列{an}的前n项和记为Sn,满足sn=
1-an
2

(1)求证:数列{an}是等比数列,并求出数列{an}的通项公式;
(2)设bn=-
1
(n+1)log3an
求数列{bn}的前n项和Tn

查看答案和解析>>


同步练习册答案