题目列表(包括答案和解析)
设
是定义在R上的奇函数,当x≤0时,
=
,则
.
设
是定义在R上的奇函数,当x≤0时,
=
,则
.
已知定义在R上的奇函数
,当x>0时
,那么x<0时
= .
设
是定义在R上的奇函数,当x≤0时,
=
,则
.
1.A2.C3.B4.D 5.C 6.B 7.D8.B9.B10.D11.A12.D13.C
13.
14.
15.
16.
17.(1)
――2分
――2分
;
――2分
(II)
――2分

18.(Ⅰ)证明:
平面
平面
,
,
平面
平面
=
,
平面
,
平面
,
,……… 2分
又
为圆
的直径,
,
…………………… 4分
平面
。
…………………… 5分
(Ⅱ)设
的中点为
,则

,又

,
则

,
为平行四边形,
…………………… 6分

,又
平面
,
平面
,
平面
。
……………………8分
(Ⅲ)过点
作
于
,
平面
平面
,
平面
,
, …………………… 9分
平面
,

,………………… 11分

.
…………………… 12分
19.解:(1)解方程得
或
1分
当
时,
或
,此时
2分
当
时,
3分
依次类推:
5分
(2)

9分
(3)由
得

11分
设
易证
在
上单调递减,在(
)上单调递增。 13分


15分
20.解:(Ⅰ)设第二关不过关事件为
,则事件
是指第二关出现点数之和没有大于
,由第二关出现点数之和为2,3的次数分别为1,2知:
…4分
答: 第二关未过关的概率为
。………………5分
(Ⅱ)设第三关不过关事件为
,则第三关过关事件为
由题设知:事件
是指第三关出现点数之和没有大于
,………7分
由第三关出现点数之和为3,4,5的次数分别为1,3,6知:
……9分
∴
………………11分
答: 第三关过关的概率为
.………………12分
21.解:(Ⅰ)函数
的导数为
,
由题意可知
对于
恒成立, 即
对于
恒成立,
可得
。
另解:函数
的导数为
,当
时
恒成立;当
时,
由
得
,则函数的单调增区间为
与
,
则当
,即
时满足条件。
(Ⅱ)由(Ⅰ)知
,
过点A(1,0)作曲线C的切线,设切点
,则切线方程为:
将
代入得:
即
(*)
则
或
故满足条件的切线只有两条,且它们的斜率分别为
与
,则由
得
22.解:(Ⅰ)设椭圆方程为
,则
,得
………2分
所以椭圆方程为
,抛物线方程为
。
另解:过
作垂直于
轴的直线
,即抛物线的准线,作
垂直于该准线,
作
轴于
,则由抛物线的定义得
,
所以

,
得
,所以c=1,
所以椭圆方程为
,
抛物线方程为
。
(Ⅱ)设
,直线
,代入
得:
,即
,
则
…………………………………………9分
同理,将
代入
得:
,
则
, ……………………………………………………11分
所以
=
为定值。
…………………………………………………………………15分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com