解:当时.原不等式为 查看更多

 

题目列表(包括答案和解析)

解关于的不等式:

【解析】解:当时,原不等式可变为,即            (2分)

 当时,原不等式可变为         (5分)  若时,的解为            (7分)

 若时,的解为         (9分) 若时,无解(10分) 若时,的解为  (12分综上所述

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为:

 

查看答案和解析>>

已知二次函数的图像经过坐标原点,且满足,设函数,其中为非零常数

(I)求函数的解析式;

(II)当 时,判断函数的单调性并且说明理由;

 (III)证明:对任意的正整数,不等式恒成立

查看答案和解析>>

古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解。在欧几里得的《几何原本》中,形如(a>0,b>0)的方程的图解法是:如图,以和b为两直角边做Rt△ABC,再在斜边上截取,则AD的长就是所求方程的解。

(1)请用含字母a、b的代数式表示AD的长。

(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处。

查看答案和解析>>

已知二次函数的图像经过坐标原点,且满足,设函数,其中为非零常数
(I)求函数的解析式;
(II)当 时,判断函数的单调性并且说明理由;
(III)证明:对任意的正整数,不等式恒成立

查看答案和解析>>

关于x的不等式,提供四个解集:①当a0时,,②当a0时,,③当a0时,,④当a0时,,那么原不等式的解集为

[  ]

A.②或③

B.①或③

C.①或④

D.②或④

查看答案和解析>>


同步练习册答案