解:设该数列有项 查看更多

 

题目列表(包括答案和解析)

已知二次函数同时满足:①不等式≤0的解集有且只有一个元素;②在定义域内存在,使得不等式成立,设数列{}的前项和

(1)求函数的表达式;

(2) 设各项均不为0的数列{}中,所有满足的整数的个数称为这个数列{}的变号数,令),求数列{}的变号数; 

(3)设数列{}满足:,试探究数列{}是否存在最小项?若存在,求出该项,若不存在,说明理由.

查看答案和解析>>

已知二次函数同时满足:①不等式≤0的解集有且只有一个元素;②在定义域内存在,使得不等式成立,设数列{}的前项和
(1)求函数的表达式;
(2) 设各项均不为0的数列{}中,所有满足的整数的个数称为这个数列{}的变号数,令),求数列{}的变号数; 
(3)设数列{}满足:,试探究数列{}是否存在最小项?若存在,求出该项,若不存在,说明理由.

查看答案和解析>>

精英家教网某工厂生产A、B两种型号的产品,每种型号的产品在出厂时按质量分为一等品和二等品.为便于掌握生产状况,质检时将产品分为每20件一组,分别记录每组一等品的件数.现随机抽取了5组的质检记录,其一等品数茎叶图如图所示:
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
表一
等级
利润
产品
一等品 二等品
A型 4(万元) 3(万元)
B型 3(万元) 2(万元)
表二
项目
用量
产品
配件(件) 资金(万元)
A型 6 4
B型 2 8

查看答案和解析>>

某工厂生产A、B两种型号的产品,每种型号的产品在出厂时按质量分为一等品和二等品.为便于掌握生产状况,质检时将产品分为每20件一组,分别记录每组一等品的件数.现随机抽取了5组的质检记录,其一等品数茎叶图如图所示:
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
   等级
利润
产品
一等品二等品
A型4(万元)3(万元)
B型3(万元)2(万元)
表二
       
表二
  项目
用量
产品
配件(件)资金(万元)
A型64
B型28

查看答案和解析>>

某工厂生产A、B两种型号的产品,每种型号的产品在出厂时按质量分为一等品和二等品.为便于掌握生产状况,质检时将产品分为每20件一组,分别记录每组一等品的件数.现随机抽取了5组的质检记录,其一等品数茎叶图如图所示:
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
      等级
利润
产品
一等品二等品
A型4(万元)3(万元)
B型3(万元)2(万元)
表二
              
表二
    项目
用量
产品
配件(件)资金(万元)
A型64
B型28


查看答案和解析>>


同步练习册答案