解得:≤n≤ 查看更多

 

题目列表(包括答案和解析)

解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断交点个数问题,在坐标系中画出图形


由图看出显然一个交点,因此函数的零点个数只有一个

袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.

查看答案和解析>>

解析:本例主要是培养学生理解概念的程度,了解解决数学问题都需要算法

算法一:按照逐一相加的程序进行.

第一步 计算1+2,得到3;

第二步 将第一步中的运算结果3与3相加,得到6;

第三步 将第二步中的运算结果6与4相加,得到10;

第四步 将第三步中的运算结果10与5相加,得到15;

第五步 将第四步中的运算结果15与6相加,得到21;

第六步 将第五步中的运算结果21与7相加,得到28.

算法二:可以运用公式1+2+3+…+n直接计算.

第一步 取n=7;

第二步 计算

第三步 输出运算结果.

查看答案和解析>>

解析 第二列等式的右端分别是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第nan与第n-1项an-1(n≥2)的差为:anan-1n,∴a2a1=2,a3a2=3,a4a3=4,…,anan-1n,各式相加得,

ana1+2+3+…+n,其中a1=1,∴an=1+2+3+…+n,即an,∴an2(n+1)2.

答案 n2(n+1)2

查看答案和解析>>

已知Pn(an,bn)都在直线L:y=2x+2上,P1为直线L与x轴的交点,数列{an}成等差数列,公差为1(n∈N*)

(Ⅰ)求数列{an},{bn}的通项公式

(Ⅱ)若f(n)=问是否存在k∈N*,使得f(k+5)=2f(k)-2成立,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=(a、b、c∈N),f(2)=2,f(3)<3且f(x)的图像按向量e=(-1,0)平移后得到的图像关于原点对称.

(Ⅰ)求a,b,c的值;

(Ⅱ)设0<|x|<1,0<|t|≤1,

求证:|t+x|+|t-x|<|f(tx+1)|;

(Ⅲ)设x是正实数,

求证:[f(x+1)]n-f(xn+1)≥2n-2.

查看答案和解析>>


同步练习册答案