误解:①对于等比数列:先构造出求.难度较大.若用数学归纳法证明同学容易想到. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
a2-x2
x-2a
(a>0)
(1)证明:f(x)既不是奇函数又不是偶函数.
(2)求f(x)的值域.
(3)若对于f(x)定义域内的任意实数x1,都能构造出一个无穷数列{xn},
使其满足条件xn+1=f(xn)(n∈N*),求a的取值范围.

查看答案和解析>>

(2006•石景山区一模)已知函数y=f(x)对于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

(2011•浦东新区三模)某同学将命题“在等差数列{an}中,若p+m=2n,则有ap+am=2an(p,m,n∈N*)”改写成:“在等差数列{an}中,若1×p+1×m=2×n,则有1×ap+1×am=2×an(p,m,n∈N*)”,进而猜想:“在等差数列{an}中,若2p+3m=5n,则有2ap+3am=5an(p,m,n∈N*).”
(1)请你判断以上同学的猜想是否正确,并说明理由;
(2)请你提出一个更一般的命题,使得上面这位同学猜想的命题是你所提出命题的特例,并给予证明.
(3)请类比(2)中所提出的命题,对于等比数列{bn},请你写出相应的命题,并给予证明.

查看答案和解析>>

已知数列{an},Sn为其前n项的和,Sn=n-an+9,n∈N*
(1)证明数列{an}不是等比数列;
(2)令bn=an-1,求数列{bn}的通项公式bn
(3)已知用数列{bn}可以构造新数列.例如:{3bn},{2bn+1},{
b
2
n
},{
1
bn
}{2bn},{sinbn}…,请写出用数列{bn}构造出的新数列{pn}的通项公式,满足数列{pn}是等差数列.

查看答案和解析>>

(2013•汕尾二模)设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*)
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>


同步练习册答案