从而:当时,与题意矛盾, 不合题意; 查看更多

 

题目列表(包括答案和解析)

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>

(2009•上海模拟)在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}
没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

已知二次函数 ,方程的两个根为,

满足,那么当时,的大小关系为(      )

A     B      C     D 

 

查看答案和解析>>

在解决问题:“证明数集没有最小数”时,可用反证法证明.

假设中的最小数,则取,可得:,与假设中“中的最小数”矛盾! 那么对于问题:“证明数集没有最大数”,也可以用反证法证明.我们可以假设中的最大数,则可以找到   ▲   (用表示),由此可知,这与假设矛盾!所以数集没有最大数.

 

查看答案和解析>>

下列叙述中正确的是(   )

①反证法原理是在假设下,如果推出一个矛盾,就证明不成立.

②独立性检验原理是在假设下,如果出现一个与相矛盾的小概率事件,就推断不成立,且该推断犯错误的概率不超过这个小概率.

③三段论可以表示为:大前提:M是P.小前提:S是M.结  论:S是P.

④流程图常常用来表示一些动态过程,通常会有一个 “起点”,一个或多个“终点”.程序框图是流程图的一种.

A.①②③            B.①②④           C.②③④           D.①②③④

 

查看答案和解析>>


同步练习册答案