顺义区2009年九年级第一次统练 查看更多

 

题目列表(包括答案和解析)

17、小明记录九年级第一次月考7个班的优秀人数分别如下:33,32,32,31,32,28,26.这组数据的众数是
32

查看答案和解析>>

小明记录九年级第一次月考7个班的优秀人数分别如下:33,32,32,31,32,28,26.这组数据的众数是   

查看答案和解析>>

小明记录九年级第一次月考7个班的优秀人数分别如下:33,32,32,31,32,28,26.这组数据的众数是________.

查看答案和解析>>

19、随着“每天锻炼一小时,健康工作五十年,幸福生活-辈子”的“全国亿万学生阳光体育运动”的展开,某校对七、八、九三个年级的学生依据《国家学生体育健康标准》进行了第一次测试,按统一标准评分后,分年级制成统计图(未画完整).为了对成绩优秀学生进行对比,又分别抽取了各年级第一次测试成绩的前十名学生进行了第二次测试,成绩见表)(采用100分评分,得分均为60分以上的整数).
(1)如果将九年级学生的第一次测试成绩制成扇形统计图,则90分以上(不包括90分)的人数对应的圆心角的度数是
100°

(2)在第二次测试中,七年级学生成绩的众数是
81
,八年级学生成绩的中位数是
86
,九年级学生成绩的平均数是
85.5

(3)若八年级学生第二次测试成绩在90分以上(不包括90分)的人数是第一次测试中的同类成绩人数的0.5%,请补全第一次测试成绩统计图.

查看答案和解析>>

(2007•乌鲁木齐)随着“每天锻炼一小时,健康工作五十年,幸福生活-辈子”的“全国亿万学生阳光体育运动”的展开,某校对七、八、九三个年级的学生依据《国家学生体育健康标准》进行了第一次测试,按统一标准评分后,分年级制成统计图(未画完整).为了对成绩优秀学生进行对比,又分别抽取了各年级第一次测试成绩的前十名学生进行了第二次测试,成绩见表)(采用100分评分,得分均为60分以上的整数).
(1)如果将九年级学生的第一次测试成绩制成扇形统计图,则90分以上(不包括90分)的人数对应的圆心角的度数是______;
(2)在第二次测试中,七年级学生成绩的众数是______,八年级学生成绩的中位数是______,九年级学生成绩的平均数是______;
(3)若八年级学生第二次测试成绩在90分以上(不包括90分)的人数是第一次测试中的同类成绩人数的0.5%,请补全第一次测试成绩统计图.
 年级 10名学生的第二次成绩
 七年级 81 85 89 81 87
 90 80 76 91 86
 八年级 97 88 88 87 85
 87 85 85 76 77
 九年级 80 81 96 80 80
 97 88 79 85 89


查看答案和解析>>

选择题

1-5. CDCBA   6-8. BDC

填空题

9. -2  ;     10.   ;       11. 7  ;     12. (不唯一) .

解答题

13. 解:原式= -------------------------------------------------------------4分

           =  -----------------------------------------------------------------------------5分

14. 解: 不等式  的解集是 -----------------------------------------1分

        不等式  的解集是  -------------------------------------------------2分

        所以,此不等式组的解集是 ---------------------------------------------4分

              整数解为 ?2 ,?1 , 0 ,1 .  --------------------------------------------5分

15. 解: 由题意,得  , ∴

       ∴ 反比例函数的解析式为 ----------------------------------------------------2分

       ∵ 点在反比例函数图象上

       ∴   ---------------------------------------------------------------------------------3分

     又∵ 一次函数的图象过点

       ∴ -----------------------------------------------------------------------------4分

       ∴  所以一次函数的解析式为 -----------------------------5分

16. 证明:在正方形ABCD中,∠DAF=∠ABE=90°, DA=AB.  ------------------------1分

DGAE

∴∠FDA +∠DAG=90°.  --------------------------------------------------------------2分

又∵∠EAB+∠DAG=90°,                         

∴∠FDA =∠EAB.  -----------------------------------------------------------------------3分

∴△DAF≌△ABE, ----------------------------------------------------------------------4分

∴DF=AE.   ------------------------------------------------------------------------------5分

17. 解:

  ---------------------------------------------------------------------------------2分

  -----5分

18. 解:

(1)过点D作DE⊥OB于E,过点C作CF⊥OB于F.

∵四边形OBCD是等腰梯形,OD=BC ,

∴ Rt△ODE≌Rt△BCF ,四边形CDEF是矩形.

∴ OE=BF , DC=EF .----------------------------------------------------------------------------1分

∵ OD=BC=2, OB=5, ∠BOD=60°,

∴ OE=BF=1 ,   DC=EF=3.

∴ 梯形OBCD的周长是12 --------------------------------------------------------------------2分

(2) 设点M的坐标为 ,联结DM和CM.

  ∵ ∠BOD=∠COD=∠OBC=60°

∴ ∠ODM+∠OMD=∠BMC+∠OMD=120°

∴ ∠ODM=∠BMC --------------------------------------------------------------------------------3分

∵ △OMD∽△BCM

  --------------------------------------------------------------------------------------4分

∴ 点M的坐标为(1, 0) 或(4,0)  ----------------------------------------------------------------5分

19. 解:(1) 联结OC. ∵ PC为⊙O的切线 ,

∴ PC⊥OC .

∴ ∠PCO=90°. ----------------------------------------------------------------------1分

∵ ∠ACP=120°

∴ ∠ACO=30°

∵ OC=OA ,

∴ ∠A=∠ACO=30°.     

∴ ∠BOC=60°--------------------------------------------------------------------------2分

∵ OC=4

-------------------------------------------3分

(2)   ∠CMP的大小不变,∠CMP=45° --------------------------------------------------4分

          由(1)知 ∠BOC+∠OPC=90°

∵ PM平分∠APC

∴ ∠APM=∠APC

∵ ∠A=∠BOC

∴ ∠PMC=∠A+∠APM=(∠BOC+∠OPC)= 45°---------------------------5分

20. 解:(1)21    --------------------------------------      1分

(2)一班众数为90,二班中位数为80?????????????????????????????????????????????????????????????????????????? 3分

(3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好;     4分

②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好;    5分

③从级以上(包括级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好.   6分

21.解:(1)设购进甲种商品件,乙种商品件.

根据题意,得-------------------------------------------2分

 化简,得

解之,得                                                                                                             

答:该商场购进甲、乙两种商品分别为200件和120件. ------------------------------------3分

(2)甲商品购进400件,获利为(元).

从而乙商品售完获利应不少于(元).

设乙商品每件售价为元,则.--------------------------------------------4分

解得.所以,乙种商品最低售价为每件108元.------------------------------------5分

22.(1)由题意

要使,须

时,能使得.------------------------------------------------------------2分

(2)的值的大小没有变化,  总是105°.-------------------3分

时,总有存在.

.------------------------------------------------------5分

23. 解:(1)  ---------------------------------------------1分

     

       ---------------------------------------------------------------------------------2分

不论取何值,方程总有两个不相等实数根  -------------------------------------------3分

(2)由原方程可得

 ∴   --------------------------------------------------------------4分

 ∴  ---------------------------------------------------------------------------------5分

 又∵

  ∴ 

   ∴  ---------------------------------------------------------------------------------6分

   经检验:符合题意.

   ∴ 的值为4.  ----------------------------------------------------------------------7分

24. 解:(1)∵抛物线经过点A(2,0), C(0,2),

            ∴    解得

            ∴抛物线解析式为 ---------------------2分

        (2) ∵点B(1,n) 在抛物线上

              ∴  -----------------------------------3分

过点B作BD⊥y轴,垂足为D.

             ∴BD=1 , CD=

             ∴ BC=2  --------------------------------------------4分

       (3) 联结OB.

在Rt△BCD中, BD=1 ,BC=2 ,

∴∠BCD=30° ----------------------------------------5分

∵ OC=BC

∴∠BOC=∠OBC

∵∠BCD=∠BOC+∠OBC

∴∠BOC=15°

∴∠BOA=75°------------------------------------------6分

过点B作BE⊥OA , 垂足为E,则OE=AE.

∴OB=AB

∴∠OAB=∠BOA=75°.-------------------------------7分

25.(1)BM=DM ,BMDM  --------------------------------------------------------1分

证明:在Rt△EBC中,M是斜边EC的中点,

∴ 

∴  ∠EMB=2∠ECB

在Rt△EDC中,M是斜边EC的中点,

∴ 

∴   ∠EMD=2∠ECD.-------------------2分

∴  BM=DM,∠EMD+∠EMB =2(∠ECDECB).

∵  ∠ECD+∠ECB=∠ACB=45°,

∴  ∠BMD=2∠ACB=90°,即BMDM. -------------------------------3分

(2)当△ADE绕点A逆时针旋转小于45°的角时,  (1)中的结论成立.

证明:

连结BD,延长DM至点F,使得DM=MF,连结BFFC,延长EDAC于点H

                                  -------------------------------------4分

DM=MFEM=MC

∴ 四边形是平行四边形.

DECFED =CF

ED= AD,

AD=CF.

DECF,----------------------------------------5分

∴ ∠AHE=∠ACF

,

∴ ∠BAD=∠BCF. --------------------------------------------------6分

又∵AB= BC,

∴ △ABD≌△CBF.

BD=BF,∠ABD=∠CBF.

∵ ∠ABD+∠DBC =∠CBF+∠DBC

∴∠DBF=∠ABC =90°.

在Rt△中,由,,得BM=DMBMDM. -------7分


同步练习册答案