A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分.

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

B

A

C

A

C

D

D

B

C

二、填空题:本大题共4小题,每小题4分,共16分.

13.   14.   15.   16.(-1,0)

三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.

17.解:(1)

                                                ………………3分

       又题意可得            ………………4分

       当=1时,有最大值为2,

                                      ………………6分

   (2)  ……7分

                                        …………………8分

                                   …………………9分

       由余弦定理得:a2=16+25-2×4×5cos=21           …………12分

18.解:(1) 抽取的全部结果所构成的基本事件空间为:

Ω={(-2,-2),(-2,3),(-1,-2),(-1,3),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3)}

共10个基本事件                                              ………………2分

设使函数为增函数的事件空间为A:

则A={(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3)}有6个基本事件   ………………4分

所以,                                          …………………6分

   (2) m、n满足条件m+n-1≤0    -1≤m≤1  -1≤n≤1的区域如图所示:

使函数图像过一、二、三象限的(m,n)为区域为第一象限的阴影部分

∴所求事件的概率为       ………………12分                         

19.解:(1).连,四边形菱形  

www.ks5u.com                       ……………2分

  的中点,

  ,……………4分

     ………6分

(2).当时,使得   …………7分

,交,则 的中点,

上中线,为正三角形的中心,令菱形的边长为,则

     

             ……………………10分

   即:   。      ………………12分

20.解:(1)  是等差数列,  …………………1分

      

       从第二项开始是等比数列,  ………………6分

   (2)                           ………………7分

      

              ………………10分

       错位相减并整理得                  ………………12分

21.解:(1)∵点A在圆

          …………3分

       由椭圆的定义知:|AF1|+|AF2|=2a

                 ……………5分

   (2)∵函数

       点F1(-1,0),F2(1,0),                             ………………6分

       ①若

            ……………7分

       ②若ABx轴不垂直,设直线AB的斜率为k,则AB的方程为y=kx+1)

       由…(*)

       方程(*)有两个不同的实根.

       设点Ax1,y1),Bx2,y2),则x1x2是方程(*)的两个根

                            ………………9分

      

      

        ……10分

      

       由①②知                        ………………12分

22.解:(1)设在公共点处的切线相同

                               …………………2分

由题意知     ,∴ ……4分

得,,或(舍去)                                       

即有                           …………………6分

(2)设在公共点处的切线相同

由题意知       ,∴

得,,或(舍去)      ………………9分

即有               ……………10分

,则,于是

,即时,

,即时,                 …………………13分

的最大值为,故的最大值为 ………………14分

 


同步练习册答案