14.若不等式对于一切非零实数x均成立.则实数的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,AD是∠BAC的平分线,⊙O过点A且与BC边相切于点D,与AB、AC分别交于E,F,求证:EF∥BC.

B.选修4-2:矩阵与变换
已知a,b∈R若矩阵M=
.
-1a
b3
.
所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.

C.选修4-4:坐标系与参数方程
将参数方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t为参数)化为普通方程.
D.选修4-5:不等式选讲
已知a,b是正数,求证:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

[选做题]
A.选修4—1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.

20090602

 

B.选修4—2:矩阵与变换
二阶矩阵对应的变换将点分别变换成点.求矩阵
C.选修4—4:坐标系与参数方程
若两条曲线的极坐标方程分别为??=l与??=2cos(θ+),它们相交于A,B两点,求线
段AB的长.
D.选修4—5:不等式选讲
求函数的最大值.

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分

22.(本小题满分10分)选修4—1几何证明选讲

如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。

   (I)求证:DE是⊙O的切线;

   (II)若的值.

 

 

23.(本小题满分10分)选修4—2坐标系与参数方程

        设直角坐标系原点与极坐标极点重合, x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为

   (I)求直线l的普通方程和曲线C的直角坐标方程;

   (II)求曲线C上的动点P到直线l的最大距离。

24.(本小题满分10分)选修4—5不等式选讲

        对于任意的实数恒成立,记实数M的最大值是m

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分

22.(本小题满分10分)选修4—1几何证明选讲

如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。

   (I)求证:DE是⊙O的切线;

   (II)若的值.

 

23.(本小题满分10分)选修4—2坐标系与参数方程

        设直角坐标系原点与极坐标极点重合, x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为

   (I)求直线l的普通方程和曲线C的直角坐标方程;

   (II)求曲线C上的动点P到直线l的最大距离。

24.(本小题满分10分)选修4—5不等式选讲

        对于任意的实数恒成立,记实数M的最大值是m

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

[选做题]
A.选修4—1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.

20090602

 

B.选修4—2:矩阵与变换
二阶矩阵对应的变换将点分别变换成点.求矩阵
C.选修4—4:坐标系与参数方程
若两条曲线的极坐标方程分别为??=l与??=2cos(θ+),它们相交于A,B两点,求线
段AB的长.
D.选修4—5:不等式选讲
求函数的最大值.

查看答案和解析>>

一、选择题:本小题共8小题,每小题5分,共40分.

题号

1

2

3

4

5

6

7

8

答案

A

B

D

B

D

B

B

C

二、填空题:本小题9―12题必答,13、14、15小题中选答2题,若全答只计前两题得分,共30分.

9., f(x)<m;  10.90 ; 11.3 ;12.

13.垂直; 14. ; 15.

 

解答提示:

2.解:设等轴双曲线为x2-y2=a2(a>0),

∵焦点到渐近线距离为,∴a=

3.解:∵    ∴

4.解:只有命题②正确。

5.解:有2男2女和三男一女两种情况,

2400种.

6.解:,∴r=3,9时,该项为有理项

,∴

7.解:由正弦定理得

由余弦定理有

8.解: 可行域:的面积为4,圆x2+y2=1的面积为,

    由几何概型计算公式得:P=

10.平均每月注射了疫苗的鸡的数量为万只。

11.解:=3。

12.解:∵

      ∴

      又

      ∴,夹角等于

13.解:垂直。两直线分别过点,前两点和后两点连线显然垂直。

法二:两直线化为普通方程是

其斜率乘积,故两直线垂直。

14.解:,应有

15.解:由圆的相交弦定理知

由圆的切割线定理知

三、解答题:

16.解:(1) ,        ……………3分

f(x)  。                     ………6分

(2)由(1)知 ,       …… 9分

的图像向右平移个单位,得到的图像,

其图像关于原点对称,                              …………… 11分

故m=  。                                         ……………12分

17.解:(1)

    又,  ………………………………………………2分

    又的等比中项为2,

    而,  ………………………………4分

      , ……………………………6分

   (2),   

   为首项,-1为公差的等差数列。 ………………………9分

   

    ;当;当

    最大。 …………………………12分

18.解:(1)这位挑战者有两种情况能过关:

①第三个对,前两个一对一错,得20+10+0=30分,       ……… ………1分

②三个题目均答对,得10+10+20=40分,                ……… ………2分

其概率分别为,            ……… ………3分

            ,                ……… ………4分

这位挑战者过关的概率为

。        ……… ………5分

(2)如果三个题目均答错,得0+0+(-10)=-10分,

如果前两个中一对一错,第三个错,得10+0+(-10)=0分;  …… ………6分

 前两个错,第三个对,得0+0+20=20分;

如果前两个对,第三个错,得10+10+(-10)=10分;      ……… ………7分

的可能取值为:-10,0,10,20,30,40.                 ………….8分

 ,    ……… ………9分

                            ………………10分

                             ……… ………11分

                             ……… ………12分

又由(1),

的概率分布为

-10

0

10

20

30

40

                                                    ………………13分

根据的概率分布,可得的期望,

                                                         ………14分

19.解:(1),∴,     ∴2a2=3b2      ……….2分

      ∵直线l:与圆x2+y2=b2相切,

=b,∴b=,b2=2,                                                             …….3分  

∴a2=3.  ∴椭圆C1的方程是          ………….  4分

(2)∵|MP|=|MF2|,

∴动点M到定直线l1:x=-1的距离等于它的定点F2(1,0)的距离. …5分

∴动点M的轨迹是以l1为准线,F2为焦点的抛物线,                                                 ………….6分

,p=2 ,                                    ………….7分

 ∴点M的轨迹C2的方程为                  .………….8分           

(3)由(1)知A(1,2),,y2≠2,①

       则,              ………….10分

    又因为      ,

       整理得,                ………….12分

则此方程有解,

       ∴解得,      ………….13分

       又检验条件①:∵y2=2时y0=-6,不符合题意。

       ∴点C的纵坐标y0的取值范围是       ………….14分

20.解法一:(向量法):

过点

⊥平面

⊥平面

又在中,

如图,以为原点,建立空间直角坐标系.       ………….1分

又在中,

又在中,

                        ………….3分

(1)证明:∵

         ∴

         ∴

         ∴

 又

⊥平面                               ………….6分

又在中,分别是上的动点,

∴不论为何值,都有

⊥平面

平面

不论为何值,总有平面⊥平面           ………….8分

(2)∵,∴,

,∴

又∵ ,     

是平面的法向量,则         .………….10分

,∵=(0,1,0),

,                            ………….12分

    ∵ 是平面的法向量,平面与平面所成的二面角为

(不合题意,舍去),

         故当平面与平面所成的二面角的大小为.…….14分

(2)解法二:∵,∴ ,

设E(a,b,c),则

∴a=1+,b=0,c=, E(1+,0, ),

)。                       

其余同解法一

(2)解法三:设是平面的法向量,则

        ∵ 

        ∴

        ∴

又在中,

又在中,

    又,且

        ……………10

                               …………12分

其余同解法一

解法四:(传统法):

(1)证明:∵⊥平面

                                    ………….1分

又在中,

                                    ………….2分

⊥平面                               ………….3分

又在中,分别是上的动点,

                                      ………….4分

⊥平面                                ………….5分

平面

∴不论为何值,总有平面⊥平面.        ………….6分

(2)解:作BQ∥CD,则BQ⊥平面

∴BQ⊥BC,BQ⊥BE,

又BQ与CD、EF共面,∴平面与∩平面BQ,

∴∠CBE平面与平面所成的二面角的平面角,为,∴

①      ………….9分

   又

   ∴