A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

、cos2105°-sin2105°

A.     B.-        C.     D.-

 

查看答案和解析>>

、cos2105°-sin2105°
A.B.-C.D.-

查看答案和解析>>

A.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.已知矩阵A=
.
1-2
3-7
.

(1)求逆矩阵A-1
(2)若矩阵X满足AX=
3
1
,试求矩阵X.
C.坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1:ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
,(t∈R)交于A、B两点.求证:OA⊥OB.
D.已知x,y,z均为正数,求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

 

A.(几何证明选讲选做题)

如图,已知AB为圆O的直径,BC切圆O于点BAC交圆O于点PE为线段BC的中点.求证:OPPE

B.(矩阵与变换选做题)

已知MN,设曲线y=sinx在矩阵MN对应的变换作用下得到曲线F,求F的方程.

C.(坐标系与参数方程选做题)

在平面直角坐标系xOy中,直线m的参数方程为t为参数);在以O为极点、射线Ox为极轴的极坐标系中,曲线C的极坐标方程为ρsinθ=8cosθ.若直线m与曲线C交于AB两点,求线段AB的长.

D.(不等式选做题)

xy均为正数,且xy,求证:2x≥2y+3.

 

查看答案和解析>>

A.(几何证明选讲选做题)


如图,已知AB为圆O的直径,BC切圆O于点BAC交圆O于点PE为线段BC的中点.求证:OPPE

B.(矩阵与变换选做题)
已知MN,设曲线y=sinx在矩阵MN对应的变换作用下得到曲线F,求F的方程.
C.(坐标系与参数方程选做题)
在平面直角坐标系xOy中,直线m的参数方程为t为参数);在以O为极点、射线Ox为极轴的极坐标系中,曲线C的极坐标方程为ρsinθ=8cosθ.若直线m与曲线C交于AB两点,求线段AB的长.
D.(不等式选做题)
xy均为正数,且xy,求证:2x≥2y+3.

查看答案和解析>>

一、选择题

1.B    2.C    3.C    4.C    5.B    6.A

7.A    8.D    9.B    10.D   

二、填空题

11.86;1.6;12.1/6   13.( 4,8)   14.108   15.(1),(2),(3)

三、解答题

16.解:(1)由已知得 解得.设数列的公比为

,可得.又,可知

解得. 由题意得. 

故数列的通项为.……………………………6分

   (2)由于   由(1)得 

   

=  ……………..13分

17.(1)∵=a, AB=2a,BC=a,

E为的中点。

DE⊥CE……(2分)

又∵∴DE⊥EB  ,而                      

∴DE⊥平面BCE…(6分)

(2) 取DC的中点F,则EF⊥平面BCD,作FH⊥BD于H,连EH,则∠EHF就是二面角E-BD-C的一个平面角。……………………(8分)

由题意得  EF=a,在Rt△ 中,…………(10分)

∠EHF=.……………………………………………(13分)

18.解:由已知

(1)若。若A是直角,则k=-2;若B是直角,则

k(2-k)+3=0, k=-1,k=3;若C是直角,则2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率为

(2)若且k≠.区间长度L=6.若B是钝角,则-k(2-k)-3<0, -1<k<3,L′=4. △ABC中B是钝角的概率

k(2-k)+3=0, k=-1,k=3;若C是直角,则2(2-k)+12=0,k=8.故m=3,△ABC是直角三角形的概率为.

求△ABC是直角三角形的概率.

19.解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,

长半轴为2的椭圆.它的短半轴

故曲线C的方程为.????????????????????????????????????????????????????????????????????????? 4分

(Ⅱ)设,其坐标满足

消去y并整理得

.??????????????????????????????????????????????????????????????????????? 6分

,即.而

于是

所以时,,故.???????????????????????????????????????????????????????? 8分

时,

所以.   13分

20.解:(1) 

函数有一个零点;当时,,函数有两个零点。…….3分

   (2)假设存在,由①知抛物线的对称轴为x=-1,∴ 

由②知对,都有

又因为恒成立, 

,即,即

时,,其顶点为(-1,0)满足条件①,又,都有,满足条件②。

∴存在,使同时满足条件①、②。…..8分

   (3)令,则

内必有一个实根。即,使成立。….13分

21.(1)1;    (2)

 

(2)(1)设M=,则有==

所以   解得,所以M=.…………………………5分

(2)任取直线l上一点P(x,y)经矩阵M变换后为点P’(x’,y’).

因为,所以又m:

所以直线l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………7分

不等式证明选讲)若,证明

柯西不等式一步可得

 

www.ks5u.com

 

 


同步练习册答案