题目列表(包括答案和解析)
已知
中,内角
的对边的边长分别为
,且![]()
(I)求角
的大小;
(II)若
求
的最小值.
【解析】第一问,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二问,![]()
三角函数的性质运用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,则当
,即
时,y的最小值为
.
已知在
中,
,
,
,解这个三角形;
【解析】本试题主要考查了正弦定理的运用。由正弦定理得到:![]()
,然后又
![]()
又
再又
得到c。
解:由正弦定理得到:![]()
![]()
又
……4分
又
……8分
又
![]()
给出问题:已知△ABC满足a·cosA=b·cosB,试判断△ABC的形状,某学生的解答如下:
![]()
故△ABC事直角三角形.
(ii)设△ABC外接圆半径为R,由正弦定理可得,原式等价于
![]()
故△ABC是等腰三角形.
综上可知,△ABC是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果________.
给出问题:已知ΔABC满足a·cosA=b·cosB,试判断ΔABC的形状,某学生的解答如下:
![]()
故ΔABC事直角三角形.
(ii)设ΔABC外接圆半径为R,由正弦定理可得,原式等价于
![]()
故ΔABC是等腰三角形.
综上可知,ΔABC是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果________.
给出问题:已知
满足
,试判定
的形状.某学生的解答如下:
解:(i)由余弦定理可得,
,
![]()
,
![]()
,
故
是直角三角形.
(ii)设
外接圆半径为
.由正弦定理可得,原式等价于![]()
![]()
,
故
是等腰三角形.
综上可知,
是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com