21.解:(1)设椭圆方程为, 查看更多

 

题目列表(包括答案和解析)

(12分)

设椭圆C:(a>b>0)过点(0,4),离心率为

(1)   求C的方程。

(2)   求过点(3,0)且斜率为 的直线被椭圆C所截线段的中点坐标。

 

 

查看答案和解析>>

已知椭圆Γ的方程为(a>b>0),A(0,b) 、B(0,-b)和 Q(a,0)为Γ的三个顶点。
(Ⅰ)若点M满足,求点M的坐标;
(Ⅱ)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E。若k1·k2=-,证明:E为CD的中点;
(Ⅲ)设点P在椭圆Γ内且不在x轴上,如何作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1、P2满足?令a=10,b=5,点P的坐标是(-8,-1)。若椭圆Γ上的点P1、P2满足,求点P1、P2的坐标。

查看答案和解析>>

设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且
(1)求椭圆C的离心率;
(2)若过A,Q,F2三点的圆恰好与直线l:相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由。

查看答案和解析>>

设椭圆M:(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4。
(1)求椭圆M的方程;
(2)若直线交椭圆于A,B两点,椭圆上一点P(1,),求△PAB面积的最大值。

查看答案和解析>>

 (12分) 设椭圆Ea > b > 0)过M(2,),N,1)两点,O为坐标原点,

(1) 求椭圆E的方程;

(2) 是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E恒有两个交点AB,且?若存在,写出该圆的方程,并求取值范围;若不存在,说明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案