③在区间上是增函数, ④的图象关于直线对称 A.①②④ B.①③ C.②③ D.③④ 查看更多

 

题目列表(包括答案和解析)

已知函数在区间[0,1]单调递增,在区间[1,2)单调递减.

(1)求a的值;

(2)若点在函数f(x)的图象上,求证点A关于直线x=1的对称点B也在函数f(x)的图象上;

(3)是否存在实数b,使得函数g(x)=bx2-1的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的值;若不存在,试说明理由.

查看答案和解析>>

下列命题:
①已知函数y=sin2x+acos2x的图象关于直线x=-
π
3
对称,则a的值为
3
3

②函数y=lgsin(
π
4
-2x)
的单调增区间是[kπ-
π
8
, kπ+
8
)  (k∈Z)

③设p=sin15°+cos15°,q=sin16°+cos16°,r=p•q,则p、q、r的大小关系是p<q<r;
④要得到函数y=cos2x-sin2x的图象,需将函数y=
2
cos2x
的图象向左平移
π
8
个单位;
⑤函数f(x)=sin(2x+θ)-
3
cos(2x+θ)
是偶函数且在[0,
π
4
]
上是减函数的θ的一个可能值是
6
.其中正确命题的个数是(  )

查看答案和解析>>

下列命题:
①已知函数y=sin2x+acos2x的图象关于直线数学公式对称,则a的值为数学公式
②函数数学公式的单调增区间是数学公式
③设p=sin15°+cos15°,q=sin16°+cos16°,r=p•q,则p、q、r的大小关系是p<q<r;
④要得到函数y=cos2x-sin2x的图象,需将函数数学公式的图象向左平移数学公式个单位;
⑤函数数学公式是偶函数且在数学公式上是减函数的θ的一个可能值是数学公式.其中正确命题的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

已知函数f(x)的图象与g(x)=2x的图象关于直线y=x对称,令h(x)=f(1-|x|),则关于函数h(x)有下列命题:

①h(x)的图象关于原点(0,0)对称;

②h(x)的图象关于y轴对称;

③h(x)的最小值为0;

④h(x)在区间(-1,0)上单调递增.

其中正确的命题是__________________.(把正确命题的序号都填上)

查看答案和解析>>

对于函数,有下列论断:

①函数的图象关于直线对称;

②函数的图象关于点对称;

③函数的最小正周期为

④函数在区间上是单调增函数.

以其中两个论断作为条件,其余两个作为结论,写出你认为正确一个命题:   ▲   .

(填序号即可,形式:

 

查看答案和解析>>

一、选择题(每小题5分,共60分)

   BDACC   ACDDB  AA

二、填空题(每小题4分,共16分)

  (13) ;   (14);   (15);   (16)②③。

三、解答题(共74分)

(17)解:(I)由于弦定理

代入

                                           …………………………………4分

      ……………………………………6分

                              ……………………………………7分

                   …………………………………8分

(Ⅱ),                     ………………………………10分

 由,得。             ………………………………11分

所以,当时,取得最小值为0,   ………………………………12分

(18)解:(I)由已知得

              故

              即

              故数列为等比数列,且

              又当时,

                                   ………………………………6分

              而亦适合上式

                                …………………………………8分

         (Ⅱ)

               所以

                     

                                      ………………………………12分

(19)解:(I)由该四棱锥的三视图可知,该四棱锥的底面的边长为1的正方形,侧棱

                                                   ……………………………4分

        (Ⅱ)连结,则的中点,

             的中点,

            

             又平面内,

             平面                   ………………8分

        (Ⅲ)不论点在何位置,都有   ………………9分

             证明:连结是正方形,

                  

                  

                   又

                  

                           …………12分

(20分)解:

(I)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示)。

            由上图可以看出,实验的所有可能结果数为20.因为每次都随机抽取,因次

这20种结果出现的可能性是相同的,实验属于古典概型。 ……………2分用

表示事“连续抽取2人都是女生”,则互斥,并且表示事

件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可

以看出,的结果有12种,的结果有2种,由互斥事件的概率加法公式,

可得

即连续抽取2张卡片,取出的2人不全是男生的概率为0.7……………6分

      (Ⅱ)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出。

   

   第二次抽取

 

第一次抽取

1

2

3

4

5

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

5

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

       

           试验的所有可能结果数为25,并且这25种结果出现的可能性是相同的,试验属于古典型。                                …………………………8分

           用表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,的结果共

有5种,因此独唱和朗诵由同一个人表演的概率

                      ……………………………12分

(21)解:

(I)

          依题意有                           ………………………2分

          即  解得          …………………………4分

         

          由,得                   

           的单调递减区间是            ………………………6分

     (Ⅱ)由  得   ………………………8分

           不等式组确定的平面区域如图阴影部分所示:

           由   得        ………………………8分

            不等式组确定的平面区域如图阴影部分所示:

           由   得

            点的坐标为(0,-1).   ………………10分

           设表示平面区域内的点()与点

            连线斜率。

            由图可知

            即……………12分

(22)解:

(I)设椭圆方程为

     则根据题意,双曲线的方程为

     且满足

           解方程组得    ……………………4分

     椭圆的方程为,双曲线的方程 ………………6分

(Ⅱ)由(I)得

      设则由的中点,所以点坐标为

坐标代入椭圆和双曲线方程,得

消去,得

解之得(舍)

所以,由此可得

所以                        …………………………10分

时,直线的方程是

代入,得

所以或-5(舍)                ……………………………12分

所以

轴。

所以   ……………………14分

 

 


同步练习册答案