设A={x|x=12m+28n,m.nÎZ}, B={x|x=4k,kÎZ} 求证:1. 8ÎA 2. A=B 证:1.若12m+28n=8 则m= 当n=3l或n=3l+1(lÎZ)时 m均不为整数 当n=3l+2(lÎZ)时 m=-7l-4也为整数 不妨设 l=-1则 m=3,n=-1 ∵8=12×3+28×(-1) 且 3ÎZ -1ÎZ ∴8ÎA 2.任取x1ÎA 即x1=12m+28n 由12m+28n=4=4 且3m+7nÎZ 而B={x|x=4k,kÎZ} ∴12m+28nÎB 即x1ÎB 于是AÍB 任取x2ÎB 即x2=4k, kÎZ 由4k=12×(-2)+28k 且 -2kÎZ 而A={x|x=12m+28n,m,mÎZ} ∴4kÎA 即x2ÎA 于是 BÍA 综上:A=B 查看更多

 

题目列表(包括答案和解析)

给出下列命题:
①“x=2”是“x2=4”的充分不必要条件;
②设A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,则实数t的取值范围为[3,+∞);
③若log2x+logx2≥2,则x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命题P:对任意的x∈R,函数y=cos(2x-
π
3
)
的递减区间为[kπ-
π
12
,kπ+
12
](k∈Z)
,命题q:存在x∈R,使tanx=1,则命题“p且q”是真命题.
其中真命题的序号为
①③④
①③④

查看答案和解析>>

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点(a,b)中心对称”.设函数f(x)=
x+1-a
a-x
,定义域为A.
(1)试证明y=f(x)的图象关于点(a,-1)成中心对称;
(2)当x∈[a-2,a-1]时,求证:f(x)∈[-
1
2
, 0]

(3)对于给定的x1∈A,设计构造过程:x2=f(x1),x3=f(x2),…,xn+1=f(xn).如果xi∈A(i=2,3,4…),构造过程将继续下去;如果xi∉A,构造过程将停止.若对任意x1∈A,构造过程都可以无限进行下去,求a的值.

查看答案和解析>>

(2012•蓝山县模拟)设集合A={x|x≤
1
2
}
,m=sin20°,则下列关系中正确的是(  )

查看答案和解析>>

已知函数f(x)=
a(x-1)2+1
bx+c-b
(a,b,c∈N)的图象按向量
e
=(-1,0)
平移后得到的图象关于原点对称,且f(2)=2,f(3)<3.
(1)求a,b,c的值;
(2)设0<|x|<1,0<|t|≤1.求证:|t+x|+|t-x|<|f(tx+1)|
(3)定义函数G(x)=f(x)-x+2.当n为正整数时,求证:G(4)×G(6)×G(8)×…×G(2n)>
2n+1
2

查看答案和解析>>


同步练习册答案