设直线x=1是函数f(x)的图像的一条对称轴.对于任意,f, 当. 在R上是奇函数, (2)当时.求f(x)的解析式. 20. (满分13分)已知椭圆中心在原点.焦点在x轴上.离心率.点分别为椭圆的左.右焦点.过右焦点且垂直于长轴的弦长为 ⑴ 求椭圆的标准方程, ⑵ 过椭圆的左焦点作直线.交椭圆于两点.若.求直线的倾斜角. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)设直线x=1是函数f(x)的图像的一条对称轴,对于任意,f(x+2)=-- f(x),当.

(1)证明:f(x)在R上是奇函数;

(2)当时,求f(x)的解析式。

 

查看答案和解析>>

(本小题满分13分)设直线x=1是函数f(x)的图像的一条对称轴,对于任意,f(x+2)="--" f(x),当.
(1)证明:f(x)在R上是奇函数;
(2)当时,求f(x)的解析式。

查看答案和解析>>

(本小题满分13分)已知函数f (x)=2n在[0,+上最小值是an∈N*).

(1)求数列{a}的通项公式;(2)已知数列{b}中,对任意n∈N*都有ba =1成立,设S为数列{b}的前n项和,证明:2S<1;(3)在点列A(2n,a)中是否存在两点A,A(i,j∈N*),使直线AA的斜率为1?若存在,求出所有的数对(i,j);若不存在,请说明理由.

查看答案和解析>>

(本小题满分13分)(第一问8分,第二问5分)

已知函数f(x)=2lnxg(x)=ax2+3x.

(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;

(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分13分)

已知椭圆经过点(p,q),离心率其中p,q分别表示标准正态分布的期望值与标准差。

 (1)求椭圆C的方程;

 (2)设直线与椭圆C交于A,B两点,点A关于x轴的对称点为。①试建立的面积关于m的函数关系;②莆田十中高三(1)班数学兴趣小组通过试验操作初步推断:“当m变化时,直线与x轴交于一个定点”。你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由。

 

查看答案和解析>>


同步练习册答案