题目列表(包括答案和解析)
(本大题满分13分)设函数
是定义域在
上的单调函数,且对于任意正数
有
,已知
.
(1)求
的值;
(2)一个各项均为正数的数列
满足:
,其中
是数列
的前n项的和,求数列
的通项公式;
(3)在(2)的条件下,是否存在正数
,使![]()
![]()
对一切
成立?若存在,求出M的取值范围;若不存在,说明理由.
(本小题满分13分)
设函数
的定义域为R,当
时,
,且对任意的实数
,
,有![]()
(1)求
; (2)试判断函数
在
上是否存在最大值,若存在,求出该最大值,若不存在说明理由;
(3)设数列
各项都是正数,且满足
![]()
,又设
,
,试比较
与
的大小.
(本大题共13分)
已知函数
是定义在R的奇函数,当
时,
.
(1)求
的表达式;
(2)讨论函数
在区间
上的单调性;
(3)设
是函数
在区间
上的导函数,问是否存在实数
,满足
并且使
在区间
上的值域为
,若存在,求出
的值;若不存在,请说明理由。
(本大题共13分)
已知函数
是定义在R的奇函数,当
时,
.
(1)求
的表达式;
(2)讨论函数
在区间
上的单调性;
(3)设
是函数
在区间
上的导函数,问是否存在实数
,满足
并且使
在区间
上的值域为
,若存在,求出
的值;若不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com