已知数列 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前n项和为Sn,a1=1,a2=2,且点(Sn,Sn+1)在直线y=kx+1上
(Ⅰ)求k的值;
(Ⅱ)求证:{an}是等比数列;
(Ⅲ)记Tn为数列{Sn}的前n项和,求T10的值.

查看答案和解析>>

已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log3(a5+a7+a9)的值是(  )
A、-5
B、-
1
5
C、5
D、
1
5

查看答案和解析>>

已知数列an的前n项和Sn满足条件2Sn=3(an-1),其中n∈N*
(1)求证:数列an成等比数列;
(2)设数列bn满足bn=log3an.若 tn=
1bnbn+1
,求数列tn的前n项和.

查看答案和解析>>

已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n∈N*).
(1)令bn=2nan,求证:数列{bn}是等差数列,并求数列{an}的通项公式.
(2)令cn=
n+1
n
anTn=c1+c2+…+cn
,试比较Tn
5n
2n+1
的大小,并予以证明.

查看答案和解析>>

已知数列{an}的前n项和Sn,对一切正整数n,点(n,Sn)都在函数f(x)=2x+2-4的图象上.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

 

一、选择题:

1―6DABADD    7―12DCABBB

二、填空题:

13.-10

14.

15.4

16.①②⑤

三、解答题:

17.(本题满分10分)

       解:(I)由向量

20090325

       又

       则…………4分

   (II)由余弦定理得

      

       所以时等号成立…………9分

       所以…………10分

18.(本小题满分12分)

       解:(I)解:由已知条件得

       …………2分

       即…………6分

       答:

   (II)解:设至少有两量车被堵的事件为A…………7分

       则…………12分

       答:至少有两量车被堵的概率为

19.(本题满分12分)

       解:(法一)

   (I)DF//BC,

      

       平面ACC1A1

       …………2分

      

…………4分

   (II)

       点B1到平面DEF的距离等于点C1到平面DEF的距离

      

      

       设就是点C1到平面DEF的距离…………6分

       由题设计算,得…………8分

   (III)作于M,连接EM,因为平面ADF,

       所以为所求二面角的平面角。

       则

       则M为AC中点,即M,D重合,…………10分

       则,所以FD与BC平行,

       所以F为AB中点,即…………12分

   (法二)解:以C点为坐标原点,CA所在直线为轴,CB所在直线为轴,CC1所在直线为z轴建立空间直角坐标系…………1分

   (1)由

      

       …………4分

   (II)

      

       又…………6分

       …………8分

   (III)设,平面DEF的法向量

       …………10分

      

       即F为线段AB的中点,

       …………12分

 

 

 

 

 

20.(本题满分12分)

       解:(I)由

      

       …………6分

   (II)由

       得

      

       是等差数列;…………10分

      

      

       …………12分

21.(本题满分12分)

       解:(I)…………2分

       又…………4分

   (II)

      

       且

       …………8分

      

       …………12分

22.(本题满分12分)

       解:(1)A1(-1,0),A2(1,0),F1(-2,0),F2(2,0)

      

      

       …………4分

   (II)设

       直线PF1与双曲线交于

       直线PF2与双曲线交于

      

       令

      

       …………6分

      

       而

* 直线PF1与双曲线交于两支上的两点,

同理直线PF2与双曲线交于两支上的两点

       则…………8分

      

       …………10分

       解得