解得= 2.= - 8 .∴ P(2.4). 查看更多

 

题目列表(包括答案和解析)

解:(1)如图①AH=AB

(2)数量关系成立.如图②,延长CB至E,使BE=DN

∵ABCD是正方形

∴AB=AD,∠D=∠ABE=90°

∴Rt△AEB≌Rt△AND

∴AE=AN,∠EAB=∠NAD

∴∠EAM=∠NAM=45°

∵AM=AM

∴△AEM≌△ANM

∵AB、AH是△AEM和△ANM对应边上的高,

∴AB=AH

(3)如图③分别沿AM、AN翻折△AMH和△ANH,

得到△ABM和△AND

∴BM=2,DN=3,∠B=∠D=∠BAD=90°

分别延长BM和DN交于点C,得正方形ABCE.

由(2)可知,AH=AB=BC=CD=AD.                          

  设AH=x,则MC=,  NC=                             图②

在Rt⊿MCN中,由勾股定理,得

                                    

解得.(不符合题意,舍去)

∴AH=6.

查看答案和解析>>

解:(1)A(-1,0),B(3,0),C(0,3).·················· 2分

抛物线的对称轴是:x=1.······················· 3分

(2)①设直线BC的函数关系式为:y=kx+b

B(3,0),C(0,3)分别代入得:

解得:k= -1,b=3.

所以直线BC的函数关系式为:

x=1时,y= -1+3=2,∴E(1,2).

时,

Pmm+3).·························· 4分

中,当时, 

时,········· 5分

∴线段DE=4-2=2,线段···· 6分

∴当时,四边形为平行四边形.

解得:(不合题意,舍去).

因此,当时,四边形为平行四边形.··········· 7分

②设直线轴交于点,由可得:

························ 8分

·········· 9分

查看答案和解析>>

解:(1)△AFB∽△FEC

证明:由题意得:∠AFE=∠D=90° 又∠B=∠C=90°

 ∴∠BAF+∠AFB=90° , ∠EFC+∠AFB=90°

∴∠BAF=∠EFC         AFB∽△FEC

(2)设EC=3x,FC=4x,则有DE=EF=5x ,∴AB=CD=3x+ 5x=8x

由△AFB∽△FEC得:     即: =  ∴BF=6x   ∴BC=BF-CF=6x+ 4x= 10x

∴在RtADE中,AD=BC=10xAE=,则有

解得舍去)   ∴AB+BC+CD+DA=36x=36(cm)    答:矩形ABCD的周长为36cm.

查看答案和解析>>

阅读下列例题:解方程
(1)当时,原方程化为,解之得(不符题意,舍去)
(2)当时,原方程化为,解之得(不符题意,舍去)
所以原方程的解是
请参照例题解方程.

查看答案和解析>>

阅读下列例题:解方程

(1)当时,原方程化为,解之得(不符题意,舍去)

(2)当时,原方程化为,解之得(不符题意,舍去)

所以原方程的解是

请参照例题解方程.

 

查看答案和解析>>


同步练习册答案