(二)填空是: 4.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2.则该三角形的斜边长为 , 5.在正方体上任意选择4个顶点.它们可能是如下各种几何形体的4个顶点.这些几何形体是 (写出所有正确结论的编号). ①矩形, ②不是矩形的平行四边形, ③有三个面为等腰直角三角形.有一个面为等边三角形的四面体, ④每个面都是等边三角形的四面体, ⑤每个面都是直角三角形的四面体. 查看更多

 

题目列表(包括答案和解析)

 [番茄花园1] 已知函数f(x)= 若a,b,c均不相等,且f(a)= f(b)= f(c),则abc的取值范围是

(A)(1,10)  (B)(5,6)  (C)(10,12)  (D)(20,24)

 

 

二填空题:本大题共4小题,每小题5分。

 


 [番茄花园1]1.

查看答案和解析>>

(2011•新余二模)本题是选做填空题,共5分,考生只能从两小题中选做一题,两题全做的,只计算第一小题
的得分.把答案填在答题 卷相应的位置.
(A)(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为ρ=2sinθ,过极点O的一条直线l与圆C相交于O、A两点,且∠AOX=45°,则OA=
2
2

(B)(不等式选讲)要使关于x的不等式|x-1|+|x-a|≤3在实数范围内有解,则a的取值范围是
[-2,4]
[-2,4]

查看答案和解析>>

已知均为正数,,则的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非选择题  共90分)

二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。

查看答案和解析>>

 [番茄花园1] 设O为坐标原点,,是双曲线(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠P=60°,∣OP∣=,则该双曲线的渐近线方程为

(A)x±y=0          (B)x±y=0

(C)x±=0         (D)±y=0

 

非选择题部分(共100分)

二,填空题:本大题共7小题,每小题4分,共28分。

 


 [番茄花园1]1.

查看答案和解析>>

 

第Ⅱ卷(非选择题,共90分)

二、填空题:(本大题4小题,每小题5分,满分20分)

13.用一个平面去截正方体,其截面是一个多边形,则这个多边形的边数最多是     条 。

 

查看答案和解析>>


同步练习册答案