“函数式变换与图象的对称性之间的关系 (在2.4函数图象变换中已详述). 查看更多

 

题目列表(包括答案和解析)

若函数的图象的一个最高点为(2,),由这个最高点到相邻的最低点间的曲线与轴交于点(6,0)

  ⑴求这个函数的解析式;

⑵求该函数的对称轴、对称中心、单调区间;

⑶这个函数怎样由进行变换得到?

查看答案和解析>>

已知函数f(x)=
x
ax-1
的图象过点(2,2)
(1)求函数f(x)的解析式;
(2)设函数g(x)=
1
x
,则g(x)
的图象经过怎样的变换可与函数f(x)的图象重合;
(3)设函数h(x)=f(x)•g(x),求h(x)在(1,5]上的最小值.

查看答案和解析>>

精英家教网已知函数f(x)=sin(ωx+?)(ω>0,0<φ<π)的图象与直线y=b (-1<b<0)的三个相邻交点的横坐标分别是1,3,7.
(Ⅰ)求f(x)的解析式,并求x∈[0,1]时f(x)的值域;
(Ⅱ)试叙述y=f(x)的图象是由y=sinx的图象经怎样变换而得到.

查看答案和解析>>

已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<
π
2
)
的图象,它与y轴的交点为(0,
3
2
),它在y轴右侧的第一个最大值点和最小值点分别为(x0,3),(x0+2π,-3).
(1)求函数y=f(x)的解析式;
(2)求这个函数的单调递增区间和对称中心.
(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的图象与x轴的交点中,相邻两个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2)

(1)求f(x)的解析式;
(2)用五点作图法做出f(x)的图象
(3)说明y=f(x)的图象是由y=sinx的图象经过怎样的变换得到?
(4)求函数的单调递减区间
(5)当x∈[
π
12
π
2
]
,求f(x)的值域.

查看答案和解析>>


同步练习册答案