设f(x)是R上的实函数.且满足:f(10+x)=f(10-x),f(20+x)= -f(20-x).则f(x)是( ) A.是偶函数又是周期函数 B.是偶函数但不是周期函数 C.是奇函数又是周期函数 D.是奇函数但不是周期函数 查看更多

 

题目列表(包括答案和解析)

设函数f ( x )的定义域、值域均为R,f ( x ) 反函数为f1 ( x ),且对任意实数x,均有f ( x ) + f1 ( x )<。定义数列{an} : a0 = 8 , a1 = 10 , an = f (an1 ) , n = 1, 2 , … .

(1)求证:an+1 + an1an ( n = 1 , 2 , … ) ;

(2)设求证:

(3)是否存在常数AB,同时满足;

①当n = 0 及n = 1 时,有an =成立;

②当n = 2 , 3, … 时,有an成立。

 如果存在满足上述条件的实数A、B的值;如果不存在,证明你的结论。

查看答案和解析>>

已知函数(x∈R,p1,p2为常数).函数f(x)定义为:对每个给定的实数x,
(1)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);
(2)设a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n-m)

查看答案和解析>>

已知函数(x∈R,p1,p2为常数).函数f(x)定义为:对每个给定的实数x,
(1)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);
(2)设a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n-m)

查看答案和解析>>

已知函数(x∈R,p1,p2为常数).函数f(x)定义为:对每个给定的实数x,
(1)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);
(2)设a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n-m)

查看答案和解析>>

设定义在R上的函数f(x)满足:①对任意的实数x,y∈R,有f(x+y)=f(x)·f(y);②当x>0时,f(x)>1.数列{an}满足a1=f(0),且f()=(n∈N*).(1)求f(0),判断并证明函数f(x)的单调性;

(2)求数列{an}的通项an的表达式;

(3)令bn是最接近

设Tn…+

查看答案和解析>>


同步练习册答案