21.已知函数f(x)=m·n.其中m=(sinωx+cosωx.cosωx).n=(cosωx-sinωx,2sinωx).其中ω>0.若f(x)相邻两对称轴间的距离不小于. (1)求ω的取值范围, (2)在△ABC中.a.b.c分别是角A.B.C的对边.a=.b+c=3.当ω最大时.f(A)=1.求△ABC的面积. 解:(1)f(x)=cos2ωx-sin2ωx+2sinωxcosωx=cos2ωx+sin2ωx=2sin(2ωx+). ∵ω>0.∴函数f(x)的周期T==. 由题意可知≥.即T≥π. 解得0<ω≤1.即ω的取值范围是{ω|0<ω≤1}. 可知ω的最大值为1. ∴f(x)=2sin(2x+). ∵f(A)=1.∴sin(2A+)=. 而<2A+<π. ∴2A+=π.∴A=. 由余弦定理知cosA=. ∴b2+c2-bc=3.又b+c=3. 联立解得或. ∴S△ABC=bcsinA=. 查看更多

 

题目列表(包括答案和解析)

. (本小题满分12分)2009年4月22日是第40个“世界地球日” (World Earth Day),在某校举办的《2009“世界地球日”》知识竞赛中,甲、乙、丙三人同时回答一道有关保护地球知识的问题,已知甲回答对这道题的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答对的概率是

   (Ⅰ)求乙、丙两人各自回答对这道题的概率.

  (Ⅱ)求甲、乙、丙三人中恰有两人回答对该题的概率.

查看答案和解析>>

(本小题满分12分)

为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。

(Ⅰ)在该团中随机采访2名游客,求恰有1人持银卡的概率;

(Ⅱ)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率。

查看答案和解析>>

(2009湖南卷理)(本小题满分12分)

如图4,在正三棱柱中,

D是的中点,点E在上,且

(I)                    证明平面平面

(II)                  求直线和平面所成角的正弦值。           

查看答案和解析>>

(2009辽宁卷理)(本小题满分12分)

某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。

(Ⅰ)设X表示目标被击中的次数,求X的分布列;

(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A        

查看答案和解析>>

 (2009湖南卷理)(本小题满分12分)w.w.w.k.s.5.u.c.o.m    

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.,现在3名工人独立地从中任选一个项目参与建设。           

(I)求他们选择的项目所属类别互不相同的概率;

(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

查看答案和解析>>


同步练习册答案