如图.在三棱柱ABC-A1B1C1中.AB⊥侧面BB1C1C.E为棱CC1上异于C.C1的一点.EA⊥EB1.已知AB=.BB1=2.BC=1.∠BCC1=.求: (Ⅰ)异面直线AB与EB1的距离, (Ⅱ)二面角A-EB1-A1的平面角的正切值. (Ⅰ)因AB⊥面BB1C1C.故AB⊥BE. 又EB1⊥EA.且EA在面BCC1B1内的射影为EB. 由三垂线定理的逆定理知EB1⊥BE.因此BE是异面直线 AB与EB1的公垂线. 在平行四边形BCC1B1中.设EB=x.则EB1=. 作BD⊥CC1.交CC1于D.则BD=BC· 在△BEB1中.由面积关系得. 解之得CE=2.故此时E与C1重合.由题意舍去. 因此x=1.即异面直线AB与EB1的距离为1. (Ⅱ)过E作EG//B1A1.则GE⊥面BCC1B.故GE⊥EB1且GE在圆A1B1E内. 又已知AE⊥EB1 故∠AEG是二面角A-EB1-A1的平面角. 因EG//B1A1//BA.∠AEG=∠BAE.故 巧妙利用典型的立体几何模型可以很轻松地解决一些复杂的高考题.在平时复习是我们应该不断总结.总结有哪些典型的立体几何模型可以用于解题.这样才能提高解题能力. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)如图,在直三棱柱ABC—中, AB = 1,

;点D、E分别在上,且

四棱锥与直三棱柱的体积之比为3:5。

(1)求异面直线DE与的距离;

(2)若BC =,求二面角的平面角的正切值。

 
 


查看答案和解析>>

(本小题满分13分)如图,在直三棱柱ABC—中, AB = 1,

;点D、E分别在上,且

四棱锥与直三棱柱的体积之比为3:5。

(1)求异面直线DE与的距离;(8分)

(2)若BC =,求二面角的平面角的正切值。(5分)

 
 

 

 

 

 

 

查看答案和解析>>

(本小题满分13分)如图,在直三棱柱ABC—中, AB = 1,;点D、E分别在上,且,四棱锥与直三棱柱的体积之比为3:5。

(1)求异面直线DE与的距离;(8分)
(2)若BC =,求二面角的平面角的正切值。(5分)

查看答案和解析>>

(本小题满分13分)如图,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.

(1)求二面角B—A1D—A的平面角余弦值;

(2)在线段AC上是否存在一点F,使得EF⊥平面A1BD?

若存在,确定其位置并证明结论;若不存在,说明理由.

查看答案和解析>>

(本小题满分13分)

如图,在直三棱柱ABC-A1B1C1中,的中点,中点.

(1)求证:∥面

(2)求直线EF与直线所成角的正切值;

(3)设二面角的平面角为,求的值.

 

查看答案和解析>>


同步练习册答案