1正弦定理:在任一个三角形中.各边和它所对角的正弦比相等. 即 == =2R 2正弦定理的应用 从理论上正弦定理可解决两类问题: 1.两角和任意一边.求其它两边和一角, 查看更多

 

题目列表(包括答案和解析)

正弦定理在解三角形中的作用:

(1)如果已知三角形的任意两个______与一_______,由三角形________,可以计算出三角形的另一________,并由正弦定理计算出三角形的另_______

(2)如果已知三角形的任意________与基中一边的______,应用正弦定理,可以计算出另一边的对角的_______,进而确定这个_______和三角形其他的_______

查看答案和解析>>

正弦定理在解三角形中的作用:

(1)如果已知三角形的任意两个______与一_______,由三角形________,可以计算出三角形的另一________,并由正弦定理计算出三角形的另_______.

(2)如果已知三角形的任意________与基中一边的______,应用正弦定理,可以计算出另一边的对角的_______,进而确定这个_______和三角形其他的_______.

查看答案和解析>>

已知椭圆.
(1)我们知道圆具有性质:若为圆O:的弦AB的中点,则直线AB的斜率与直线OE的斜率的乘积为定值。类比圆的这个性质,写出椭圆的类似性质,并加以证明;
(2)如图(1),点B为在第一象限中的任意一点,过B作的切线分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值;
(3)如图(2),过椭圆上任意一点的两条切线PM和PN,切点分别为M,N.当点P在椭圆上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.
    
图(1)                                    图(2)

查看答案和解析>>


同步练习册答案