题目列表(包括答案和解析)
(本小题满分12分)如图,在平面直角坐标系中,直线
:
与
轴交于点
,与
轴交于点
,抛物线
过点
、点
,且与
轴的另一交点为
,其中
>0,又点
是抛物线的对称轴
上一动点.
(1)求点
的坐标,并在图1中的
上找一点
,使
到点
与点
的距离之和最小;
(2)若△
周长的最小值为
,求抛物线的解析式及顶点
的坐标;
(3)如图2,在线段
上有一动点
以每秒2个单位的速度从点
向点
移动(
不与端点
、
重合),过点
作
∥
交
轴于点
,设
移动的时间为
秒,试把△
的面积
表示成时间
的函数,当
为何值时,
有最大值,并求出最大值.
![]()
(本小题满分12分)
如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN ∥OB交CD于N.
![]()
1.⑴求证:MN是⊙O的切线;
2.⑵当0B=6cm,OC=8cm时,求⊙O的半径及图中阴影部分的面积.
(本小题满分12分)
甲、乙、丙三个人准备打羽毛球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.
1.(1)请你画出表示“抛硬币”一个回合所有可能出现的结果的树状图;
2.(2)求一个回合能确定两人先上场的概率.
(本小题满分12分)
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
![]()
1.⑴ 画出
关于点O成中心对称的
,并写出点B1的坐标;
2.⑵ 求出以点B1为顶点,并经过点B的二次函数关系式.
(本小题满分12分)
如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合)PQ⊥AB,垂足为Q.设PC=x,PQ= y.
![]()
1.⑴求y与x的函数关系式;
2.⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?
3.⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.
说明:
1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.
2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.
3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.
4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
一、选择题(本题满分21分,共有7道小题,每小题3分)
题号
1
2
3
4
5
6
7
答案
D
B
A
C
D
A
C
二、填空题(本题满分21分,共有7道小题,每小题3分)
题号
8
9
10
11
答案
1
甲


题号
12
13
14
答案
16
(8,3)
4
32
三、作图题(本题满分6分)
15.⑴ 正确作出图形,并做答. …………………………3′
⑵ 132 . …………………………6′
四、解答题(本题满分72分,共有9道小题)
16.(本小题满分6分)
|