方程|2x+y|+|2x-y|=4表示的曲线曲线 ( ) A.关于x轴对称但不关于y轴对称 B.关于y轴对称但不关于x轴对称 C.关于原点对称 D.以上都不对 查看更多

 

题目列表(包括答案和解析)

关于曲线C:(x-m)2+(y-2m)2=,有以下五个结论:
(1)当m=1时,曲线C表示圆心为(1,2),半径为|n|的圆;
(2)当m=0,n=2时,过点(3,3)向曲线C作切线,切点为A,B,则直线AB方程为3x+3y-2=0; 
(3)当m=1,n=时,过点(2,0)向曲线C作切线,则切线方程为y=-(x-2);
(4)当n=m≠0时,曲线C表示圆心在直线y=2x上的圆系,且这些圆的公切线方程为y=x或y=7x;
(5)当n=4,m=0时,直线kx-y+1-2k=0(k∈R)与曲线C表示的圆相离.
以上正确结论的序号为   

查看答案和解析>>

下面各组方程中,表示相同曲线的是(  )
A、y=x与
y
x
=1
B、|y|=|x|与y2=x2
C、|y|=2x+4与y=2|x|+4
D、
x=sinθ(θ为参数)
y=cos2θ
与y=-x2+1

查看答案和解析>>

下面各组方程中,表示相同曲线的是


  1. A.
    y=x与数学公式=1
  2. B.
    |y|=|x|与y2=x2
  3. C.
    |y|=2x+4与y=2|x|+4
  4. D.
    数学公式与y=-x2+1

查看答案和解析>>

如图,直线ll:y=2x与直线l2:y=-2x之间的阴影区域(不含边界)记为w,其左半部分记为w1,右半部分记为W2
(1)分别用不等式组表示w1和w2
(2)若区域W中的动点P(x,y)到l1,l2的距离之积等于4,求点P的轨迹C的方程;
(3)设不过原点的直线l与曲线C相交于Ml,M2两点,且与ll,l2如分别交于M3,M4两点.求证△OMlM2的重心与△OM3M4的重心重合.
【三角形重心坐标公式:△ABC的顶点坐标为A(xl,y1),B(x2,y2),C(x3,y3),则△ABC的重心坐标为(
x1+x2+x3
3
y1+y2+y3
3
)】

查看答案和解析>>

如图,直线ll:y=2x与直线l2:y=-2x之间的阴影区域(不含边界)记为w,其左半部分记为w1,右半部分记为W2
(1)分别用不等式组表示w1和w2
(2)若区域W中的动点P(x,y)到l1,l2的距离之积等于4,求点P的轨迹C的方程;
(3)设不过原点的直线l与曲线C相交于Ml,M2两点,且与ll,l2如分别交于M3,M4两点.求证△OMlM2的重心与△OM3M4的重心重合.
【三角形重心坐标公式:△ABC的顶点坐标为A(xl,y1),B(x2,y2),C(x3,y3),则△ABC的重心坐标为()】

查看答案和解析>>


同步练习册答案