的解析式为:.将A两点代入得. 查看更多

 

题目列表(包括答案和解析)

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含m的代数式表示);
(2)“若AB的长为2
2
,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法;
解:由(1)知,对称轴与x轴交于点D(
 
,0)
∵抛物线的对称性及AB=2
2

∴AD=DB=|xA-xD|=2
2

∵点A(xA,0)在抛物线y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h=xC=xD,将|xA-xD|=
2
代入上式,得到关于m的方程0=(
2
)2+(      )

(3)将(2)中的条件“AB的长为2
2
”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含m的代数式表示);
(2)“若AB的长为数学公式,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法;
解:由(1)知,对称轴与x轴交于点D(,0)
∵抛物线的对称性及数学公式
∴AD=DB=数学公式
∵点A(xA,0)在抛物线y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h=xC=xD,将数学公式代入上式,得到关于m的方程数学公式
(3)将(2)中的条件“AB的长为数学公式”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含m的代数式表示);
(2)“若AB的长为2
2
,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法;
由(1)知,对称轴与x轴交于点D(______,0)
∵抛物线的对称性及AB=2
2

∴AD=DB=|xA-xD|=2
2

∵点A(xA,0)在抛物线y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h=xC=xD,将|xA-xD|=
2
代入上式,得到关于m的方程0=(
2
)2+(      )

(3)将(2)中的条件“AB的长为2
2
”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>

已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.

(1)用配方法求顶点C的坐标(用含有m的代数式表示);

(2)“若AB的长为2,求抛物线的解析式”的解法如下:

由(1)知,对称轴与x轴交于点D(________,0).

∵抛物线具有对称性,且AB=2

∴AD=DB=|xA-xD|=

∵A(xA,0)在抛物线y=(x-h)2+k上,

∴(xA-h)2+k=0.    ①

∵h=xC=xD

∴将|xA-xD|=代入①,得到关于m的方程0=()2+(________).  ②

补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.

(3)将(2)中条件“AB的长为2”改为“△ABC为等边三角形”,用类似的方法求出抛物线的解析式.

查看答案和解析>>

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.

(1)用配方法求顶点C的坐标(用含m的代数式表示);

(2)“若AB的长为2,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.

  解:由(1)知,对称轴与x轴交于点D(  ,0).

  ∵抛物线的对称性及AB=2

  ∴AD=BD=|xA-xD|=

  ∵点A(xA,0)在抛物线y=(x-h)2+k上,

  ∴0=(xA-h)2+k.  ①

  ∵h=xC=xD,将|xA-xD|=代入上式,得到关于m的方程

  0=()2+(  )  ②

(3)将(2)中的条件“AB的长为2”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>


同步练习册答案