题目列表(包括答案和解析)
(本题满分15分) 已知抛物线
的顶点是椭圆
的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线
的方程;
(2)已知动直线
过点
,交抛物线
于
、
两点.
若直线
的斜率为1,求
的长;
是否存在垂直于
轴的直线
被以
为直径的圆
所截得的弦长恒为定值?如果存在,求出
的方程;如果不存在,说明理由.
(本题满分15分) 已知函数f(x)=(2-a)(x-1)-2lnx,,其中a∈R,
(1)求f(x)的单调区间;
(2)若函数f(x)在(0,
)上无零点,求a的取值范围.
(本题满分15分)
已知函数
.
(Ⅰ)若
无极值点,但其导函数
有零点,求
的值;
(Ⅱ)若
有两个极值点,求
的取值范围,并证明
的极小值小于
.
(本题满分15分)如图,点
为圆形纸片内不同于圆心
的定点,动点
在圆周上,将纸片折起,使点
与点
重合,设折痕
交线段
于点
.现将圆形纸片放在平面直角坐标系
中,设圆
:
,记点
的轨迹为曲线
.
⑴证明曲线
是椭圆,并写出当
时该椭圆的标准方程;
⑵设直线
过点
和椭圆
的上顶点
,点
关于直线
的对称点为点
,若椭圆
的离心率
,求点
的纵坐标的取值范围.
![]()
(本题满分15分)已知函数![]()
,
(1)若函数
在
处的切线方程为
,求实数
,
的值;
(2)若
在其定义域内单调递增,求
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com