所以.当且仅当且时等号成立. 查看更多

 

题目列表(包括答案和解析)

请先阅读:

设平面向量=(a1,a2),=(b1,b2),且的夹角为è,

因为=||||cosè,

所以≤||||.

当且仅当è=0时,等号成立.

(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;

(II)试求函数的最大值.

查看答案和解析>>

请先阅读:
设平面向量=(a1,a2),=(b1,b2),且的夹角为θ,
因为=||||cosθ,
所以≤||||.

当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)试求函数的最大值.

查看答案和解析>>

已知函数

(1)求函数的定义域;

(2)求函数在区间上的最小值;

(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

【解析】第一问中,利用由 即

第二问中,得:

第三问中,由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。

解:(1)由 即

(2)得:

(3)由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时,

当命题p为假,命题q为真时,

所以

 

查看答案和解析>>

请先阅读:
设平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夹角为θ,
因为
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a
2
1
+
a
2
2
×
b
2
1
+
b
2
2

当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a
2
1
+
a
2
2
+
a
2
3
)(
b
2
1
+
b
2
2
+
b
2
3
)
成立;
(II)试求函数y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>

某同学对函数进行研究后,得出以下五个结论:①函数的图象是中心对称图形;②对任意实数均成立;③函数的图象与轴有无穷多个公共点,且任意相邻两点的距离相等;④函数的图象与直线有无穷多个公共点,且任意相邻两点的距离相等;⑤当常数满足时,函数的图象与直线有且仅有一个公共点。其中所有正确结论的序号是      (     )

A.①②④          B.①②③④     C.①②④⑤         D.①②③④⑤

 

查看答案和解析>>


同步练习册答案