由题意知.为的最大值或最小值.所以或. 查看更多

 

题目列表(包括答案和解析)

设A是如下形式的2行3列的数表,

a

b

c

d

e

f

满足性质P:a,b,c,d,e,f,且a+b+c+d+e+f=0

为A的第i行各数之和(i=1,2), 为A的第j列各数之和(j=1,2,3)记中的最小值。

(1)对如下表A,求的值

1

1

-0.8

0.1

-0.3

-1

(2)设数表A形如

1

1

-1-2d

d

d

-1

其中,求的最大值

(3)对所有满足性质P的2行3列的数表A,求的最大值。

【解析】(1)因为,所以

(2)

因为,所以

所以

当d=0时,取得最大值1

(3)任给满足性质P的数表A(如图所示)

a

b

c

d

e

f

任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表仍满足性质P,并且,因此,不妨设

得定义知,

从而

     

所以,,由(2)知,存在满足性质P的数表A使,故的最大值为1

【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力

 

查看答案和解析>>

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>


同步练习册答案