28.如图.四边形OABC为直角梯形.A(4.0).B(3.4).C(0.4).点M从O出发以每秒2个单位的速度向A运动.点N从B同时出发以每秒1个单位的速度向C运动.其中一个动点到达终点时.另一个动点也随之停止运动.过点N作NP⊥x轴于点P.连结AC交NP于Q.连结MQ.设运动时间为t秒. (1)求AC所在直线的解析式, (2)请用含t的代数式直接写出点Q的坐标, (3)试写出△AQM的面积S与时间t的函数关系式.并求出其最大面积, (4)是否存在点M.使△AQM为直角三角形?若存在.求出点M的坐标,若不存在.请说明理由. 姓名 学校 班级 考号 # (除作图可使用2B铅笔外,其余请用黑色墨水签字笔填写) 二.填空题: 9 , 10 11 ,12 13 ,14 15 ,16 17 ,18 请在各题目的答题区域内作答.超出黑色矩形边框限定区域的答案无效 2010年崇川区初中毕业.升学模拟考试 查看更多

 

题目列表(包括答案和解析)

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
【小题1】(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?(4分)
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)
【小题2】(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

查看答案和解析>>

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
小题1:(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?(4分)
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)
小题2:(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

查看答案和解析>>

(本题满分12分)如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l::y=x+b保持与四边形OABC的边交于点M、N(M在折线AOC上,N在折线ABC上)设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S为的差(S≥0)。

(1)求∠OAB的大小;

(2)当M、N重合时,求l的解析式;

(3)当b≤0时,问线段AB上是否存在点N使得S=0?若存在,求b的值;若不存在,请说明理由;

(4)求S与b的函数关系式。

 

查看答案和解析>>

(本题满分12分)如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l::y=x+b保持与四边形OABC的边交于点M、N(M在折线AOC上,N在折线ABC上)设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S为的差(S≥0)。
(1)求∠OAB的大小;
(2)当M、N重合时,求l的解析式;
(3)当b≤0时,问线段AB上是否存在点N使得S=0?若存在,求b的值;若不存在,请说明理由;
(4)求S与b的函数关系式。

查看答案和解析>>

(本题满分12分)如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l::y=x+b保持与四边形OABC的边交于点M、N(M在折线AOC上,N在折线ABC上)设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S为的差(S≥0)。
(1)求∠OAB的大小;
(2)当M、N重合时,求l的解析式;
(3)当b≤0时,问线段AB上是否存在点N使得S=0?若存在,求b的值;若不存在,请说明理由;
(4)求S与b的函数关系式。

查看答案和解析>>


同步练习册答案