题目列表(包括答案和解析)
(本小题满分13分)
已知某几何体的三视图如图所示,其中
分别是该几何体的一个顶点P在三个投影面上的投影,
分别是另四个顶点A,B,C,D的投影。
![]()
(I)从①②两个图中选择出该几何体的直观图;
(II)求直线PA与平面PBC所成角的正弦值;
(III)设平面PAD与平面ABC的交线为
,求二面角A—
—B的大小。
己知在锐角ΔABC中,角
所对的边分别为
,且![]()
(I )求角
大小;
(II)当
时,求
的取值范围.
![]()
20.如图1,在平面内,
是
的矩形,
是正三角形,将
沿
折起,使
如图2,
为
的中点,设直线
过点
且垂直于矩形
所在平面,点
是直线
上的一个动点,且与点
位于平面
的同侧。
(1)求证:
平面
;
(2)设二面角
的平面角为
,若
,求线段
长的取值范围。
![]()
![]()
21.已知A,B是椭圆
的左,右顶点,
,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线
于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数
,
(Ⅰ)若
在
上存在最大值与最小值,且其最大值与最小值的和为
,试求
和
的值。
(Ⅱ)若
为奇函数:
(1)是否存在实数
,使得
在
为增函数,
为减函数,若存在,求出
的值,若不存在,请说明理由;
(2)如果当
时,都有
恒成立,试求
的取值范围.
一、选择题:
DDABD ACCBB CD
二、填空题:
13.
14.
15.32 16. 
三、解答题:
17.解:(I)
服从超几何分布

3分
(II)
5分
7分
9分
Y
5
6
7
P



…………10分
|